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ABSTRACT
In the context of Maximum Likelihood (ML) source separa-
tion in a semi-blind scenario, where the spectra of the sources
are known and distinct, the likelihood equations amount
to a set of matrix decompositions (known as the “Sequen-
tially Drilled” Joint Congruence Transformation (SeDJoCo)).
However, quite often multiple solutions of SeDJoCo exist,
only one of which is the optimal solution, corresponding to
the global maximum. In this paper we characterize the differ-
ent solutions and propose a procedure for detecting whether a
given solution is sub-optimal. Moreover, for such sub-optimal
solutions we propose a procedure for re-initializing an itera-
tive solver so as to converge to the optimal solution. Using
simulation, we present the empirical probability to encounter
a sub-optimal solution (by a given iterative algorithm), as
well as the resulting separation improvement when applying
our proposed re-initialization approach in such cases.

Index Terms— joint matrix transformation, maximum
likelihood, semi-blind source separation

1. INTRODUCTION

While a myriad of diverse and successful methods for Blind
Source Separation (BSS) and Independent Component Anal-
ysis (ICA) have been proposed over the past three decades,
relatively little effort has been addressed towards Maximum
Likelihood (ML) separation. This is mainly due to the fact
that in a fully blind scenario, statistical models for the sources
are generally unknown (apart from their mutual statistical in-
dependence), and ML estimation cannot be applied in such
cases. Nevertheless, several Quasi-ML methods have been
proposed (e.g., [1]), which involve educated guesses, assump-
tions or parameterized estimates regarding the missing statis-
tical models. Moreover, in a semi-blind scenario, such statis-
tical models might be known a-priori.

In the semi-blind context of separating Gaussian sources
with distinct (known) temporal correlations, it has been
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shown in [2, 3, 4] that for obtaining the ML estimate, a set
of matrix decomposition equations (constituting the “Like-
lihood Equations” in this case) needs to be solved. These
equations lead to a special form of hybrid exact-approximate
joint diagonalization, termed a “Sequentially Drilled” Joint
Congruence transformation (SeDJoCo) in [4]. Interestingly,
the same set of equations finds applications also in Coordi-
nated Beamforming (CBF) [4].

While, to the best of our knowledge, no closed-form solu-
tion of the SeDJoCo equations is currently known, several it-
erative solution algorithms have been proposed in recent years
[5, 2, 3, 4, 6, 1] (some of these pre-dated the explicit formu-
lation of the general SeDJoCo problem in [5, 4], but provide
implicit solutions for the same). In [4] we established suffi-
cient conditions for existence of a solution, but the issue of
uniqueness remained unresolved.

Although the number of equations in SeDJoCo equals
the number of unknowns, it turns out that the solution is not
unique, in general, since the equations are nonlinear. In the
context of ML BSS, the iterative algorithms may thus con-
verge to solutions corresponding to local stationary points of
the likelihood function, rather than to the global maximum.
Although any solution of SeDJoCo usually leads to rea-
sonable separation, sub-optimal solutions result in degraded
separation performance and do not share the asymptotic opti-
mality of the ML estimate.

In this work we characterize possible different solutions
of SeDJoCo, and propose a procedure for disqualifying sub-
optimal solutions which do not correspond to the global max-
imum. Moreover, we show how such sub-optimal solutions
can be used for re-initializing an iterative algorithms, such
that following re-initialization the algorithm would converge
to the desired solution. The procedure is based on detecting
undesired permutations and scaling (if any) in the solution
and on correcting these in the re-initialization process. We
demonstrate (in simulation) the empirical probability of ob-
taining sub-optimal solutions, and the resulting improvement
in separation performance when applying our proposed pro-
cedure in such cases.
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2. THE “SEQUENTIALLY DRILLED” JOINT
CONGRUENCE TRANSFORMATION (SEDJOCO)

For completeness of the exposition, we briefly review the
SeDJoCo problem formulation in this section.

Assume the classical static mixture model X = AS,
where S = [s1 s2 · · · sK ]T ∈ RK×T denotes a matrix
of K statistically independent source signals (s1, . . . , sK ∈
RT ), A ∈ RK×K denotes an unknown (but invertible) mix-
ing matrix, and X ∈ RK×T denotes the matrix of observed
mixture signals. From X , it is desired to estimate the mixing
matrix and, subsequently, the source signals. When the source
signals are zero-mean Gaussian and each has its own tempo-
ral (and known) covariance matrix Ck = E

{
sks

T
k

}
∈ RT×T

(for k = 1, . . . ,K) it can be shown (see [2], [3] (Chapter 7)
or [1] for more details) that the ML estimate Â of A can be
obtained (up to a sign ambiguity) as follows. First, construct
K symmetric “target-matrices” as

Qk =
1

T
XC−1

k XT ∈ RK×K , k = 1, . . . ,K (1)

(note that this is an ordered set). Then, look for a matrix
Â ∈ RK×K which decomposes these target matrices as

Qk = ÂDkÂ
T

, k = 1, . . . ,K, (2)

such that the matrices D1, . . . ,DK ∈ RK×K are not neces-
sarily diagonal, but satisfy the property

Dkek = ek , k = 1, . . . ,K, (3)

where the pinning vector ek denotes the k-th column of the
K × K identity matrix. In other words, the k-th column
of the k-th matrix Dk must equal ek, namely, must be all-
zeros except for a “1” in its k-th element (and, since each
Dk must be symmetric by construction, this also applies to
its k-th row), or, from another perspective, ek should be an
eigenvector of Dk with eigenvalue 1. We term this structure
a “drilled” structure, as illustrated in Fig. 1. A substitution

with B
△
= A−1 (the ML estimate of the unmixing matrices)

is also possible by reformulating (2) as

B̂QkB̂
T
= Dk , k = 1, . . . ,K. (4)

Interestingly, in [4, 7] we have shown that the very same
fundamental transformation is also useful in the context of
CBF for the multi-user MIMO downlink, where a base station
with K antennas transmits to N ≤ K users each having K
antennas as well. The elimination of the multi-user interfer-
ence is achieved via CBF, employing a solution of SeDJoCo
for a special set of target matrices, constructed from the (flat
fading) channels’ coefficients matrices.

In [4] two iterative solution algorithms have been pre-
sented. One approach is based on Newton’s method, em-
ploying a conjugate gradient solution if desired, for enhanced

Fig. 1. Illustration of SeDJoCo for K = 3

computational efficiency (termed NCG). The other method
(termed STJOCO) is based on a modification of an existing
AJD algorithm that uses LU decompositions. Another pos-
sible iterative algorithm can be based on an approach which
was originally proposed in the context of the joint multi-user
MIMO system (JMMS) [8]. All these algorithms may con-
verge to a solution which does not correspond to the global
maximum of the likelihood function. However, the former
two can depend on the initialization and, as we shall show,
NCG can be “directed” to the desired solution if initialized in
its vicinity - which can be deduced from a sub-optimal solu-
tion using the procedure proposed in the next section.

3. MULTIPLE SOLUTIONS

To characterize the multiple possible solutions of SeDJoCo,
let us denote by B a given solution satisfying

BQkB
Tek = ek k = 1, 2, ...,K. (5)

Now assume that the ordered set of target matrices Q1,Q2, ...,QK

is permuted into a new set, assuming, for simplicity of the ex-
position, that only Q1 and Q2 are swapped. Namely, define
a new set of target matrices, denoted Q̃1, Q̃2, ..., Q̃K , such
that Q̃1 = Q2, Q̃2 = Q1, and Q̃k = Qk for all 3 ≤ k ≤ K.
Now denote a SeDJoCo solution for the newly ordered set as
B̃, satisfying

B̃Q̃kB̃
T
ek = ek k = 1, 2, ...,K. (6)

Next, define Π1,2 as the (symmetric) permutation matrix
that swaps the first and second elements of a vector, namely
Π1,2e1 = e2, Π1,2e2 = e1 and Π1,2ek = ek for all other
3 ≤ k ≤ K. Now consider the matrix B′ = Π1,2B̃. We
assert that this matrix solves the SeDJoCo equations for the
original set {Qk}Kk=1, since

B′Q1B
′Te1 = Π1,2B̃Q̃2B̃

T
ΠT

1,2e1

= Π1,2B̃Q̃2B̃
T
e2 = Π1,2e2 = e1, (7)
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and, similarly, B′Q2B
′Te2 = e2, with B′QkB

′T=ek for
all other 3 ≤ k ≤ K. This means that we have found an
additional solution to the original SeDJoCo problem, via a
permutation of a solution to a permuted SeDJoCo problem.

Note further, that the nonlinear set of “permuted” SeD-
JoCo equations applied to the elements of B̃ in (6) is es-
sentially different from the original equations applied to the
elements of B in (5), namely - different elements of the tar-
get matrices multiply different products of elements of the
B matrix in these two sets. Consequently, the resulting el-
ements of B′ would generally be essentially different from
the elements of B (i.e., the difference between these solu-
tions would generally not be confined merely to permutation
of their elements).

Now, since any permutation matrix can be expressed as
the product of two-elements-permutation matrices, we may
extend the above result to claim that, in general, the num-
ber of “essentially different” solutions of a K-dimensional
SeDJoCo problem may be at least as large as the number of
possible permutations of the set, which is K!. Each of these
provides an exact solution of the likelihood equations (in the
context of ML BSS), and therefore corresponds to a stationary
point of the likelihood function (of B), but only one of these
corresponds to the true (global) ML estimate of B. It is there-
fore of significant interest to be able to detect a sub-optimal
solution, and, moreover, to try to reach the “correct” solu-
tion. Fortunately, this is possible (at least under asymptotic
conditions) in the context of BSS when the source signals are
stationary - as we shall explain in the following section.

4. IDENTIFYING AND RECTIFYING SUB-OPTIMAL
SOLUTIONS

Under asymptotic conditions in BSS, even sub-optimal so-
lutions of SeDJoCo provide reasonable (albeit sub-optimal)
separation of the sources, because the solution of the SeD-
JoCo equations always amounts to hybrid exact-approximate
joint diagonalization of the sources [5], where the exact diag-
onalization applies to the “drilled” row (and column) in each
target matrix, and the approximate diagonalization follows by
applying to all other rows (and columns) in these matrices.
Such a solution, even when not related to the global maxi-
mum of the likelihood, provides reasonable separation.

Quite commonly in BSS, the solution is only obtained up
to possible permutation and scaling of the sources, which are,
in a fully blind scenario, inevitable ambiguities. Fortunately,
however, in the context of ML BSS, when the statistical mod-
els of the sources are available, the permutation and scaling
ambiguities can be eliminated, since each of the reconstructed
sources can be tested against its available statistical model and
the different sources can be identified and ordered according
to their empirical match to the respective models. This feature
enables us to detect cases where the reconstructed (separated)
sources are permuted (and possibly scaled) relative to their

expected order - which would in turn mean that the solution
at hand is a “permuted” solution, and as such is too far from
the “true” (ML) solution (the likelihood’s global maximum).

Moreover, after identifying the permutation (and possi-
ble scaling) of the reconstructed sources, we may de-permute
(and rescale) the estimated separation matrix, thereby bring-
ing it closer to the “true” ML solution. We can then use the
de-permuted B matrix to initialize an iterative SeDJoCo so-
lution, increasing the chances of convergence to the true solu-
tion, since the starting-point would be much “closer” to that
solution.

A most convenient case in which the reconstructed
sources can be compared against their statistical models is
the case of stationary source signals with known spectra [2].
Assuming such stationarity, our proposed identification of
sub-optimal solutions and the associated remedy take the
following steps:

i. Given a solution B̂, estimate the separated sources as
Ŝ = B̂X;

ii. Use any consistent spectrum estimation method to esti-
mate the spectra of the K reconstructed sources;

iii. To each of the K estimated spectra, find the “best
match” among the K known spectra. More specif-
ically, denoting the known spectra as {Pk(e

jω)}Kk=1

and the estimated spectra as {P̂k(e
jω)}Kk=1, the goal is

to find for each k its respective index ℓk ∈ {1, ...K}
and scaling parameter γk ∈ R, via

{ℓk, γk} = argmin
ℓ,γ

∫ 2π

0

(
Pℓ(e

jω)− γ2 · P̂k(e
jω)

)2

dω.

(8)
However, we would need to find the optimal association
of each of the known spectra to each of the estimated
spectra. Rather than trying all possible associations
(permutations), we can take a sub-optimal greedy ap-
proach, e.g., by first associating the best-matched pair,
then eliminating the already matched spectra from both
groups and proceeding to the next best match, and so
forth. At the end of this association process we end
up with a permutation matrix Π, such that its k-th row
has a “1” at the corresponding ℓk-th column. We also
construct a diagonal scaling matrix Γ, which has the re-
spective optimal scaling coefficients, γk, as its (k, k)-th
elements. Note that normally, if B̂ is an optimal so-
lution, we should get Π = IK (the identity matrix)
and Γ ≈ IK , because the optimal solution should be
permutation-free, and the respective scaling is taken
care of in the SeDJoCo solution (the only deviations
of Γ from IK would be due to errors in the estimated
spectra). However, sometimes Π would be different
from IK - implying a sub-optimal SeDJoCo solution,
for which we should take the remedy steps outlined in
the sequel.
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Fig. 2. (left) Empirical percentage of obtaining a sub-optimal (permuted) solution; (right) Average improvement in ISR attained
by the re-initialization strategy (for the cases of sub-optimal solutions only).

iv. If Π ̸= IK , a new initial guess for B can be con-

structed as ̂̃
B

△
= ΓΠB̂. Note that, by construction, if̂̃

B is applied to the mixtures, the new separated sources

Ŝ =
̂̃
BX would each be associated with its respec-

tive spectrum (with a scaling factor close to 1). Note,

however, that ̂̃
B (as opposed to B̂) is not a solution

of the SeDJoCo equations, and therefore it is not the
ML estimate of B. Nevertheless, we can now create

a new set of target matrices as Q̃k
△
=

̂̃
BQ

̂̃
B

T

(for
k = 1, ...,K), and feed this new set to an appropriate it-
erative SeDJoCo-solving algorithm. In effect, the trans-
formation of the set constitutes a new “initial guess” (or
“starting point”) for the algorithm, and if that algorithm
has a local convergence property, it would be likely to
converge to a new B̂

′
, which would be close to an iden-

tity matrix, yet would provide an exact SeDJoCo solu-
tion for the new set.

v. The ultimate solution of the original SeDJoCo prob-

lem would then be given by Bo
△
= B̂

′ ̂̃
B, which, by

construction, provides an exact solution to the original
SeDJoCo problem (with the original Qk matrices), and
yet (if the iterative algorithm did not deviate too far
from the initial state) has the correct permutation and
scaling.

5. SIMULATION RESULTS

To demonstrate the proposed identification and correction ap-
proach, we simulated the following BSS scenario: K sources
are generated by passing white Gaussian noise through K
FIR filters of length 12, with randomly chosen impulse re-
sponse coefficients (independent, Gaussian distributed with
zero mean and unit variance). These sources are then mixed
using a random mixing-matrix A (similarly drawn from a
Gaussian distribution). We use T samples to construct the
K target matrices Q1, ...,QK as per (1), where the known
covariance matrices Ck are obtained from the FIR filters (the
stationarity and the ensuing Toeplitz structure of all Ck are

used for efficient computation in the spectral domain, using
the sources’ known spectra, see [2] for details).

We ran 1000 independent trials, showing (for several val-
ues of K and T ) the empirical percentage of sub-optimal
(permuted) solutions, as well as the average improvement in
separation performance (in terms of the residual Interference
to Source Ratio (ISR)) resulting from the correction strategy
proposed above. The presented improvement applies only
to the cases of permuted solutions - when the optimal (non-
permuted) solution is obtained upfront, it is detected as such
(by the proposed approach), and no correction is needed or
applied. All of the presented simulation results were obtained
using the NCG algorithm presented in [4], which has a local
convergence property, and is therefore sensitive to initializa-
tion and can be guided to the optimal solution by the proposed
method. We note that not all iterative SeDJoCo algorithms
share that property - for example, according to our experi-
ence, a JMMS-based algorithm (based on [8]) almost always
converges to a permuted solution, and is almost insensitive to
initialization.

Evidently, the probability of obtaining a permuted so-
lution decreases with K but increases with T . This can be
attributed to the fact that for smaller values of K and for
larger values of T , the target matrices are almost jointly-
diagonalizable, which means that the different SeDJoCo so-
lutions are in fact “close” to each other (in some sense), and
the probability of moving from the optimal to a sub-optimal
solution increases. However, sub-optimal solutions are sig-
nificantly more adverse when K is large, hence the corrective
action attains a more significant improvement in such cases.

6. CONCLUSION

We identified and characterized the existence of multiple so-
lutions to the SeDJoCo problem. In the context of ML Semi-
Blind Source Separation, solutions which do not correspond
to the global maximum of the likelihood function are sub-
optimal and are characterized by a detectable permutation of
the resulting separated sources. The detection can be used to
re-initialize an iterative algorithm so as to have it redirected
to the optimal solution.
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