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ABSTRACT

This paper considers adaptive signal detection in stochastic homo-
geneous environments where the disturbance covariance matrix of
both test and training signals, R, is assumed to be a random matrix
with a priori knowledge of R. Unlike existing detectors assuming
a known hyperparameter associated with R, a knowledge-aided de-
tector with the capability of automatic weighting is considered by
accounting for the uncertainty of the prior knowledge. Specifically,
the generalized likelihood ratio test (GLRT) is utilized to develop the
test statistic, along with the maximum marginal likelihood (MML)
estimation of the hyperparameter. The proposed KA-MML-GLRT
detector is evaluated by numerical simulations and the results show
improved detection performance over conventional and knowledge-
aided detectors, especially in the case of limited training signals and
inaccurate prior knowledge.

Index Terms— Stochastic homogeneous model, generalized
likelihood ratio test, maximum marginal likelihood estimation.

1. INTRODUCTION

For adaptive signal detection, a homogeneous model is usually as-
sumed, where the disturbance in the test signal shares the same co-
variance matrix with target-free training signals [1,2]. The classical
adaptive matched filter (AMF) and Kelly’s generalized likelihood
ratio test (GLRT) were proposed for this purpose. Both detectors re-
quire the computation of the sample covariance matrix (SCM) from
sufficient training signals which may not be available in practice.
To mitigate such a demanding requirement of homogeneous train-
ing signals, a diagonal loading or colored loading has been found to
be an efficient way in [3]. Although the diagonal loading approach
appears to be heuristic at first, it turns out to be the solution to the
covariance matrix estimation and the subsequent adaptive signal de-
tection in a class of stochastic homogeneous environments [4-9] as
well as various stochastic heterogeneous models [10-13].

Mathematically, the adaptive signal detection in the homoge-
neous environment is formulated as the following binary hypothesis
testing:

Hy: xo=do, xpx=dp,k=1,--- K, )
Hi: xo0=as+do, Xk:dk,k:L-",K,
where xg € CV*1 is the test signal, x;; = dg,k =1,---, K, are

target-free training signals, s is the known array response, « is an un-
known complex-valued amplitude, do and dy, are independent, zero-
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Fig. 1. Directed graphical model representation of (a) conventional
and (b) stochastic homogeneous models; Circles denote random
variables, squares denote deterministic model parameters, and dia-
monds denote user parameters. Shaded circles further represent ob-
served random variables. Note the different (deterministic versus
stochastic) ways of treating the interference covariance matrix R.

mean complex-valued Gaussian distributed random vectors with co-
variance matrices given by
E{dodg'} = E{drd)} =R, @

where the disturbance covariance matrix R is assumed to be un-
known.

For the conventional homogeneous model, R is considered as
a deterministic hyperparameter, while the stochastic homogeneous
model, as considered in this paper, assumes R to be a random ma-
trix with built-in prior knowledge. A graphical model representation
of the two homogeneous models is shown in Fig. 1. Note the differ-
ent (deterministic versus stochastic) ways of treating the interference
covariance matrix R.. Specifically, R is assumed to have a complex
inverse Wishart distribution, i.e., R ~ CW™!((n — N)R, p) [4]:

o |1
»(R) = ~|(M - N)R| (=N r(RR) 3)
L(N, p) R
where
B N
D(N,p) =D (p = N+ k), @)

k=1

with T'(-) denoting the Gamma function. In addition, R denotes the
known prior covariance matrix obtained from sources such as land-
cover/land-use (LCLU) maps, past measurements, etc. [14], and the
hyperparameter v describes the uncertainty of the prior knowledge
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R with respect to R. The larger 1 is, the more important R is, as
we have

E{RR ;) =R,
R+ (u— N) tr{R}R

E{R-R’R,u} = - NE-1

(&)

with g > N + 1.

In this paper, we are interested in developing knowledge-
aided Bayesian detection with the capability of combining the
available signals and the prior knowledge in a fully automatic,
hyperparameter-free way. Our approach is to treat the hyperparam-
eter  as a deterministic but unknown parameter. To estimate the
hyperparameter, the maximum marginal likelihood (MML) estima-
tion is proposed by finding the marginal likelihood function. The
MML estimation of p utilizes the test and training signals as well as
the available prior knowledge by taking into account its uncertainty.
Once the MML estimates of p are obtained in both hypotheses, the
test statistic of the proposed KA-MML-GLRT detector is developed
in a GLRT-like principle which computes the ratio of the maximum
marginal likelihood functions under both hypotheses.

The rest of the paper is organized as follows. Conventional and
existing knowledge-aided detectors are briefly reviewed in Section 2.
Following that, the KA-MML-GLRT detector and the underlying es-
timation of unknown parameters are derived in Section 3. Simulation
results are provided in Section 4 to show the effectiveness of the pro-
posed KA-MML-GLRT detector. Finally, conclusions are drawn in
Section 5.

2. PRIOR ARTS

Assuming the hyperparameter p is known in advance, knowledge-
aided detectors have been proposed in [5, 6, 8]. Particularly, the
knowledge-aided GLRT (KA-GLRT) and knowledge-aided AMF
(KA-AMF) detectors were developed according to the one-step and
two-step GLRT principles [8]:

t )2

'Y x

TkA-GLRT = TA*J ol 1 (6)
(%X xo0+ K)(stXZ 's)
15 %o |?
'Y x

Tka-AMF :%, (7
st¥ s

where the covariance matrix estimation 33 linearly combines the
sample covariance matrix R and the prior knowledge R with the
weighting factors determined by the hyperparameter p as

S=KR+ (p— N)R, ®)

where R is obtained from K training signals:

1 K
= 2 DXL ©)
k=1

Compared with the AMF and Kelly’s GLRT, it is easy to see that the
knowledge-aided counterparts inherit the same detection statistic but
with the sample covariance matrix replaced by the colored loading
form in (8).

In practice, the hyperparameter p may not be known. To address
this issue, the simplest way is to take a subjective determination of
1 before applying the above knowledge-aided detectors. However,
performance loss has been observed and evaluated in [8, Fig.12] if

2902

— XK

r X1

°o /1
T \oa 91

Fig. 2. Directed graphical model representation of the hierarchical
homogeneous model in [15]; Note the the hyperparameter p, de-
scribed by a circle here, is considered to be a random parameter with
two hierarchical hyperparameters fi,, and fas.

one subjectively chooses an under-estimated or an over-estimated
hyperparameter. As a result, it is highly desired that the knowledge-
aided detector can automatically determine the weighting factors by
accounting for the availability of training signals and the uncertainty
of the prior knowledge.

One approach is based on a hierarchical stochastic homogenous
model [15], where the hyperparameter p is further considered as a
uniform discrete random variable over a pre-specified interval,i.e.,

AR ) (10)

where p,,, and pps are, respectively, the lower and upper bounds of
1, and Ay is the discretization stepsize. The graphical model repre-
sentation of the hierarchical stochastic homogenous model is shown
in Fig. 2, where the hyperparameter p is described by a circle, in-
stead of a diamond in Fig. 1. Then the minimum mean squared error
(MMSE) estimate of the hyperparameter p is obtained by first deriv-
ing the posterior distribution p(,u\xl, ,Xx ) and then computing

o~ unif (fm

the posterior mean of p|x1,- -, XK:
12278
2 ph(p)
N E— (an
h(u)
H=Hm
where
— N|* I'(N,K +
h(n) = = N ( B 1)

[KR + (u— N)R|K+e - T(N, p)
From (11), it is seen that the hyperparameter L can be estimated
from the training signals {x }{_, via R, the prior covariance ma-
trix R, and the discretized hyperparameter range (ftm, par). With
the MMSE estimate of u, the KA-AMF detector of (7) and the
KA-GLRT detector of (6) can be implemented in a fully automatic
hyperparameter-free way.

In the following, we develop a knowledge-aided hyperparameter-
free detector in a different way. First, we consider the hyperparam-
eter y as a deterministic but unknown parameter, as opposed to the
stochastic assumption on  in [15]. This deterministic approach is
useful to skip the selection of a pre-specified interval on the hyper-
parameter, i.e., [ftm, ptar], and the discretization step on y as a grid
mismatch effect may be incurred when the true p falls in between
two discretized grids. Second, by treating y in the deterministic
way, it is possible to utilize a GLRT-like principle by computing
the ratio of the maximum marginal likelihood functions under both
hypotheses.



3. KA-MML-GLRT: KNOWLEDGE-AIDED MAXIMUM
MARGINAL LIKELIHOOD GENERALIZED LIKELIHOOD
RATIO TEST

In the following, we derive the proposed KA-MML-GLRT detector
in detailed steps. The statistic of the KA-MML-GLRT is developed
as follows

maxmax [ fi (Xo,%1,"* , Xk |o, R) p(R|p; R)dR
" «

T =

mgxffo (X07X1,~" XK‘R)p(R“Nv )dR

13)

where fo,1{-} denote, respectively, the conditional likelihood func-
tion under Hy and H;:

fi (%0,%x1, ,xk |, R), i=0,1,
=fi(xo0|a,R) f (x1,--- ,xK |R)
— 1 —1
= o g P T (RTE)E - Ad
with
i =vyiyi + KR, (15)

with y; = %o — Bias, f1 = 1, Bo = 0, and p(R|p; R) is the
prior distribution of R in (3). Essentially, the KA-MML-GLRT of
(13) computes the marginal likelihood functions of both the test and
training signals under Hy and H1, and then takes the ratio.

Due to the integral of an inverse complex Wishart distribution,
the marginal likelihood functions can be evaluated as

/fi (%0, %1, -+

) XK |Oé, R)p(Ry s R)dR

|(M N R‘“ | | (L+N) —tr(R E)dR
TI-(K+1)N1" N, )
| -NR|"T (N, K +p+1)

5| 1
ZGAONT (N ) || " (16)
where L = K + p+ 1, and

Si(a,p) =i+ (u— N)R=yiy{ + KR+ (u— N)R
17

witha =0if¢ = 0.
Defining

n(p) = (= N)RP'T(N, p+ K + )T~

(13) reduces to

Y(N,p),  (8)

. max max {n(u) |21 (a, p)|” }

max {n62) [So(w)]| "}
_pxfmsBen ™)
B I (

Given u, the MML estimate of « can be derived as follows.
Defining E() = KR + (u — N) R, we have

“wy:)
(20)

|80, )] = |yl + 20| = 1B (1452
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Fig. 3. Probability of detection versus SINR: sufficient training
signals (K = 24) and reliable prior (u = 16). Two groups of
performance curves can be observed. The conventional AMF and
GLRT detectors are the inferior group, while the other group are the
knowledge-aided detectors with slight advantage over the previous
group in this case.

where yo = Xo and y1 = xo — as. Then it is easy to show that

s"E (Wxo

amL = , 21
T sHE (s @y
and the minimum cost function is
Hre—1 2
. —_— —_— s H)Xo
miny = (u)ys = X E o — e WPl )
« sHE™ (u)s

As a result, the test statistic reduces to

He—1 2\ —L
max () [2(u)| ~ (1+xEE (u)xo — 2L )
T =

pn>N
max 1 (4) | E()| (14 x5"E (1)x0)
(23)

The final step is to find the MML estimates of p under Ho and
H,, which we resort to the one-dimensional Gauss-Newton algo-
rithm. For implementation, we use fminbnd in MATLAB for the
constrained maximization as y is lower bounded by N '.

Denoting fimi,0 and fime,1 as the marginal likelihood estimates
under Hy and H, respectively, we have

_ He—1(5 y%0 2\ L
)[R E (1 xE )% — Ea el
7(f10)|E(f10)| =% (1 +xg'E 7 (fi0)x0) -
Hy
5 YKA-MML-GLRT (24)
0

where yka-mMmL-GLRT 1 @ proper threshold to meet the given probabil-
ity of false alarm.

!"The upper bound specified in fininbnd is chosen to be an arbitrarily large
integer. Particularly the upper bound of 500 is used in all our simulations in
Section 4
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Fig. 4. Probability of detection versus SINR: limited training signals
(K = 2) and reliable prior (1 = 16).

4. PERFORMANCE EVALUATION

In this section, simulation results are provided to demonstrate the ef-
ficiency of the proposed KA-MML-GLRT detector and also to com-
pare it with other detectors in terms of probability of detection. The
considered detectors include 1) the Kelly’s GLRT [1]; 2) the con-
ventional AMF [2]; 3) the KA-AMF with known p [8]; 4) the KA-
GLRT with known g [8]; 5) the KA-AMF with the MMSE estimate
of p [15]; 6) the KA-AMF with the MMSE estimate of R [15]. To
compute above KA-AMEF detectors 5) and 6), we discretize the range
of pas (9 : 1:100) with a stepsize of 1. In all simulation examples,
we consider the case where N = 8 and the steering vector is given
bys = [1,---,1]T. The average signal-to-interference-plus-noise
ratio (SINR) is defined as

SINR = |a/?’sTR s, (25)
where R is the fixed prior covariance matrix generated by
[R]i; = pI", (26)

where p = 0.9 is chosen. The simulated performance is obtained
by using at least 10000 Monte Carlo trials for the probability of
false alarm Py = 0.01. For each Monte-Carlo trial, the covari-
ance matrix R is generated from an inverse Wishart distribution as
R ~ CW™!((p — N)R, ) of (3). Then, the disturbances dy,
k =0,1,---, K, are i.i.d. generated according to the generated
covariance matrix R in each trial.

In the first example, we examine the detection performance with
K =24 and u =9, a scenario of sufficient training signals K > N
and reliable prior covariance matrix ;& > N. As shown in Fig. 3, all
considered knowledge-aided detectors give the same performance,
which is slightly better than that of the the conventional AMF and
GLRT detectors.

Fig. 4 shows the probability of detection versus the SINR when
the training signals are limited, i.e., K = 2, and the prior R is
still relatively reliable, i.e., 4 = 16. In this case, the knowledge-
aided detectors should put less weights on the sample covariance
matrix from the training signals and more weights on the prior ma-
trix R. As seen from Fig. 4, the KA-GLRT with the known z (red
dash lines) provides the benchmark performance over all detectors.
The knowledge-aided detectors show very closed performance with
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Fig. 5. Probability of detection versus SINR: limited training signals
(K = 2) and less reliable prior (;z = 9).

the proposed KA-MML-GLRT detector giving slightly better perfor-
mance.

Finally, we consider the most challenging scenario, where the
training signals are limited X' = 2 and, at the same time, the prior
covariance matrix R is less reliable, i.e., pn = 9. Fig. 5 shows the
evaluated probability of detection versus the SINR. As seen from
Fig. 5, the proposed KA-MML-GLRT attains the detection perfor-
mance close to the benchmark provided by the KA-GLRT with the
known p. Also, it is an evident performance improvement from
the other two hyperparameter-free knowledge-aided detectors (i.e.,
the KA-AMF detectors with the MMSE estimate of p and R) to
the proposed KA-MML-GLRT detector. Moreover, the proposed
KA-MML-GLRT detector is also better than the KA-AMF with
the known . The performance improvement of the proposed KA-
MML-GLRT detector in this very limited training scenario may be
due to the joint utilization of both test and training signals (effec-
tively, K = 3 signals) for the estimation of the hyperparameter
u, whereas only K = 2 training signals are used for the MMSE
estimates of p or R in [15].

5. CONCLUSION

This paper considered the adaptive signal detection in a stochastic
homogeneous model which treats the disturbance covariance matrix
as a random matrix with mean given by a known prior covariance
matrix. As the accuracy of the prior covariance matrix described by
a hyperparamter, we developed a knowledge-aided hyperparameter-
free GLRT detector by utilizing the MML estimation of the hyper-
parameter. Compared with the MMSE estimate of the hyperparame-
ter, the MML estimation of the hyperparameter is free from a pre-
discretization step and avoids the range specification. Numerical
evaluation shows that the proposed KA-MML-GLRT provides fur-
ther improvements over the KA-AMF detectors with the MMSE es-
timates, especially in the case of limited training signals and less
reliable prior covariance matrix.
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