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ABSTRACT

Use of the phase of a signal to measure distance carries an
inherent ambiguity. The problem is typically addressed by
the use of several different frequencies and the Chinese Re-
mainder Theorem or lattice methods, but these methods result
in computational complexity issues. The difficulties are in-
creased by the presence of noise. This paper presents a lattice-
based algorithm to resolve phase ambiguity more efficiently
and under more relaxed constraints than existing approaches.
Simulations are presented to illustrate the performance of the
proposed algorithm and compared with existing methods.

Index Terms— Lattice theory, Wrapped phase, Distance
ambiguity, Chinese reminder theory, Lattice theory

1. INTRODUCTION

The (phase) ambiguity problem can arise in many engineer-
ing fields, such as radar system [1], sensor localization [2] and
estimation [3]. In this problem, a sensor measurement, typ-
ically, the phase of a signal is only the remainder of ground
true value divided by a known constant modulus plus additive
noise. Such an ambiguity problem can be efficiently solved
via either a closed-form CRT method [4] or a lattice [5] by us-
ing multiple measurements under different moduli, provided
that the set of used moduli are co-prime integers. Without the
co-prime constraint, an optimal solution may be achieved via
the searching based algorithm [3]. But the implementation
demands very high computational complexity because of the
involvement of exhaustive searches over parameter space. In
this paper, we present a lattice based algorithm to solve this
general ambiguity problem without the co-prime constraint.
Based on the work in [7], a modified iteration for closest point
searching is derived so that the proposed algorithm is compu-
tationally more efficient than existing approaches.

The rest of the paper is organised as follows. In Section 2,
signal phase ambiguity problem is described in the framework
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of Lattice Theory. We propose the lattice-based algorithm in
Section 3. An adaptive searching algorithm for closest point
searching in a lattice is presented in Section 4 and it is fol-
lowed by a description of the computer simulations to high-
light the performance of the proposed methods. Finally, we
conclude the work in Section 6.

2. PROBLEM FORMULATION IN LATTICE
THEORY

Denoted by r ∈ R, the distance being measured by the phase
of signal at multiple wavelengths λ1, · · · , λm, the measure-
ment corresponding to i-th wavelength can be written as

yi,0 = r mod λi ⇐⇒ r = niλi + yi,0 (1)

where yi,0 is the i-th measurement in the absence of noise,
and ni is an unknown positive integer signifying the number
of wavelengths involved in the transmission. To guarantee
that the equations can be solved to provide a unique distance,
we assume that λ1 > ... > λm and r ≤ LCM(λ1, ..., λm),
where LCM(·) is the least common multiple function and m
is the number of used wavelengths. In this work, it is assumed
that each of the set of phase measurements is corrupted with
an additive noise of distribution ωi

iid∼ N (0, δ2λ2
i ) [5], where

δ > 0 is a small constant. (1) can be written as

ci = niλi + yi,0 + ωi, i = 1, · · · ,m. (2)

where ci are the possible values of r in the presence of noise.
The problem devolves to one of jointly estimating the set of
integers {n1, · · · , nm} and the underlying unique distance r.

Writing in vector forms ω ∼ N (0,C), where ω =
[ω1, · · · , ωm], C = diag{δ2λ2

1, · · · , δ2λ2
m}, and y =

[y1, · · · , ym], n = [n1, · · · , nm], λ = [λ1, · · · , λm], the
likelihood p(y|n, r) is proportional to

exp

{
−1

2
(r1− n · λ− y)C−1(r1− n · λ− y)T

}
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The maximum likelihood solution is given by

(r̂, N̂) = arg min
(r,n)∈R×Zm

m∑
i=1

(
r

λi
− n− yi

λi

)2

= arg min
(r,n)∈R×Zm

‖rλ̄− n− ȳ‖ (3)

where 1 = [1, · · · , 1], λ̄ = [1/λ1, · · · , 1/λm] and ȳ =
[y1/λ1, · · · , ym/λm].

This problem can be efficiently addressed using lattice
methods. In lattice theory, a real lattice of dimension m is
defined as the set of point in Rm satisfying

Ω(G) , {uG : u ∈ Zm} (4)

where G of dimensionm×n is called generator matrix and u
is a m dimension integer vector. Two fundamental problems
involved in a lattice based are 1) find the nearest lattice point;
and 2) basis reduction.

For any given point x ∈ Rm, the closest lattice point
problem is to find a vector c ∈ Ω(G) such that ‖x − c‖ ≤
‖x− c′‖, ∀c′ ∈ Ω(G), where ‖ · ‖ is the Euclidean norm.

The basis reduction problem is to find an alternative ba-
sis without changing the original lattice structure where the
alternative basis is a set of shortest and “as orthogonal as pos-
sible” vectors. A standard approach to reduction is to take a
unimodular matrix U (|det U| = 1) with integer entries and
replace G by T = UG, i.e. these two basis generate same
lattice space.

Another crucial conception in lattice theory is that of a
Voronoi cell. The Voronoi cell of lattice Ω(G), denoted by
V(G), can be defined as the intersection of half spaces [7],

Hv =

{
x ∈ Rm|x · u ≤ 1

2
u · u, u ∈ Ω(G) \ 0

}
where (·) is dot product. The minimal set of lattice vectors
such that V(G) = ∩Hv is called the set of Voronoi relevant
vectors, denoted by Rel(G). A method to find the Voronoi
relevant vectors is described in [8].

The solution of the underlying problem (3) using lattice
method involves two steps. First, we find the unknown inte-
ger set N based on measurements y, then estimate r using
MLE. Given n, r̂ is obtained by r̂ = (n+ ȳ)λ̄+, where λ̄+ is
the Moore-Penrose pseudo inverse of λ̄: λ̄+ = (λ̄T λ̄)−1λ̄T .
Substituting r̂ into (3), we have

N̂ = arg min
n∈Zm

‖(n + ȳ)(Im − λ̄λ̄+)‖ (5)

where Im is them×m identity matrix. Let A = (Im−λ̄λ̄+).
(5) demonstrates that the estimation of the set of integers n
is the problem of finding the nearest point nA in the lattice
Ω(A) with a basis A from a given point ȳA.

A is able to be reduced to a diagonal matrix using Lemma
1. As a consequence, the closed-form lattice algorithm [5] can
be used to find the estimate of N.

Lemma 1. Let λi ∈ Z and gi,m = GCD(λi, λm) for i =
1, · · · ,m − 1, where GCD(·) is the great common divisor
operation, then lattice basis A can be reduced to a diagonal
basis with following form

diag

{
g1,m

∏m−1
i=1 λi
λ1

, · · · , gm−1,m

∏m−1
i=1 λi
λm−1

, 0

}
,

if GCD
(

λi

gi,m
,
λj

gj,m

)
= 1, i, j = 1, · · · ,m− 1, i 6= j.

3. THE PROPOSED ALGORITHM

In this paper, we are interested in using moduli which do not
satisfy the condition of Lemma 1 and therefore, the closed-
form lattice algorithm is not applicable.

By the Hermite Normal Form(HNF) decomposition, A
can be represented as the product of an upper-triangular ma-
trix T and a unimodular matrix U [6], so that Ω(A) = Ω(T).
The elements of the mth row and column of T are all zero
since the rank of A is m− 1.

Suppose that the closest lattice point to the given point
ȳA and the associated integer vector corresponding to Ω(T)
are solved and denoted by P = [P1, · · · , Pm−1, 0] and
v = [v1, · · · , vm−1, vm] respectively, where vm is unde-
termined. Then we have vT = N̂A = P. We aim to
solve N̂ from these known values. Since vT = (N̂U−1)T,
therefore vU = N̂ which can be written as follows, where
j = 1, · · · ,m

m−1∑
i=1

viui,j + vmum,j = N̂j (6)

All the values are known in these equations except N̂j and
the undetermined integer value vm . N̂j in (6) are integers and
bounded by 0 < N̂j ≤ LCM(λ1,··· ,λm)

λj
, therefore

0 < vm +

∑m−1
i=1 viui,j
um,j

≤ LCM(λ1, · · · , λm)

λjum,j
(7)

Lemma 2. Let U, A and T be integer matrices as defined
in this section. Then there exist {um,j ∈ Z, j = 1, · · · ,m}
satisfying following relation

1

um,1λ1
= · · · = 1

um,mλm
= ± 1

LCM(λ1, · · · , λm)

Proof. Since UA = T and the entries of last row of T are
all 0, then we have um,j

∏m−1
i=1 λi − um,m

∏m
i=1 λi

λj
= 0 for

j = 1, · · · ,m
Clearly, the solution of {um,j} is K

λj
. Consider {um,j ∈

Z, j = 1, · · · ,m}, then let K = kLCM(λ1, · · · , λm) where

2897



k ∈ Z \ 0 (det U will be 0 if k = 0). Substituting K into
um,j = K

λj
, we have

1

um,1λ1
= · · · = 1

um,mλm
= ± 1

kLCM(λ1, · · · , λm)

Let k = ±1 and the lemma is proved.

Let um,j ∈ Z+ and j = 1, from Lemma 2, (7) can be
written as

−
∑m−1
i=1 viui,1
um,1

< vm ≤1−
∑m−1
i=1 viui,1
um,1

Lemma 3. Let X ∈ R. there exists an unique integer vm
satisfies −X < vm ≤ 1−X .

Consider that vm ∈ Z and from Lemma 3, vm can be
uniquely determined by vm = −

⌊∑m−1
i=1 viui,1

um,i

⌋ ∑m−1
i=1 viui,1

um,i
6∈ Z

vm = 1−
∑m−1

i=1 viui,1

um,i

∑m−1
i=1 viui,1

um,i
∈ Z

Therefore, all parameters in (6) are known, and N̂ can be
uniquely determined.

4. FINDING THE CLOSEST LATTICE POINT BY
RELEVANT VECTORS

Finding the lattice point in Ω(G) which is closest to a given
point x ∈ Rm can be iteratively implemented as in [7]:

tk+1 = tk + dk (8)
dk = arg min

d∈Rel(G)∪{0}
‖x− tk − d‖ (9)

with an initial guess on t0 which lies in Ω(G). It can be
proved that this algorithm converges to the closest point of x
within a finite number of steps.

Inspired by [7] and [9], we may use an adaptive step size
αk rather a fixed step size in the iteration. Thus, the above
iteration may be written as

tk+1 = tk + αkdk (10)
{dk, αk} = arg min

c∈Rel(G), α∈Z+∪{0}
‖x− tk − αc‖ (11)

We have following proposition to optimally choose αk:

Proposition 1. The optimal choice of αk satisfies αk =

Round
(∣∣∣∑m−1

i=1 βici∑m−1
i=1 c2i

∣∣∣), where ci and βi is ith element of c

and x− tk respectively and c ∈ Rel(G).

Proof. Given x and c, minα∈R ‖x− tk −αc‖ can be written
into minα

∑m−1
i=1 (βi − αci)2

Taking derivative
∑m−1
i=1 (βi − αci)2 w.r.t. α and setting

it zero gives α =
∑m−1

i=1 βici∑m−1
i=1 c2i

.
Since αk is either a positive integer or 0, therefore the

optimal choice is αk = Round
(∣∣∣∑m−1

i=1 βici∑m−1
i=1 c2i

∣∣∣)

Proposition 2. The algorithm (10) will be convergent to clos-
est point within finite steps.

Proof. Denote the closest point of x by P. If tk lies in the
Voronoi cell of P, then from the definition of Voronoi region,
we have

∑m−1
i=1 βici <

1
2

∑m−1
i=1 c2i , where ci and βi is ith

element of c and x− tk, ∀c ∈ Rel(G), thus from Proposition
1, αk = 0.

If tk does not lie in the Voronoi cell of P, then from
tk+1 = tk + αkdk, we have

‖x− tk+1‖
{
< ‖x− tk − αkc‖ α 6= 0
= ‖x− tk+1‖ αk = 0

where α ∈ Z+,α 6= αk, ∀c ∈ Rel(G) and dk 6= c.
This implies that the distance between x and tk+1 will

be decreased strictly until αk = 0, i.e. the algorithm is con-
vergent. From the above analysis, αk = 0 means that the
tk lies in the the Voronoi cell of P and the closest point is
attained.

An illustrative example showing the searching path and
number of number of iteration differences between the con-
ventional searching algorithm and the proposed adaptive
searching algorithm is given in Figure1.

−350 −300 −250 −200 −150 −100 −50 0

0

50

100

150

200

250

The iterative path of
 improved algorithm

The iterative path of
conventional algorithm

Fig. 1: An illustrative example for comparing the conventional searching and adaptive
searching algorithms. The given point is indicated using a black circle and the lattice
point is indicated by blue dot. Red arrowed-line shows the iteration path of conventional
algorithm and the green arrowed-line shows the adaptive searching algorithm.

After obtaining the closest point to the given point P, it
is easy to find the associated vector v corresponding to lattice
T via vT = P since T is upper-triangular matrix.

5. SIMULATION

In this section, we compare the performance of proposed al-
gorithm with the search-based CRT algorithm presented in
[3]. The latter is regarded as an optimal algorithm.

Two sets of moduli, which do not satisfy the co-prime
constraint, are used as below to demonstrate the efficiency
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of the proposed algorithm.

Λ1 ={21, 22, 23, 24, 25, 26, 27, 29}
Λ2 ={56, 57, 58, 59, 60, 61, 62, 63}

The distance r is randomly selected between 0 and the
LCM of the modulus set. The parameter δ in phase measure-
ment noise variance δ2λ2

i is chosen such that −20 log10 δ =
30 + 2n, n = 0, 1, · · · , 15, which provides an indication
for both noise level and signal to noise ratio in the simula-
tion. All simulation results illustrated are averaged over 1000
Monte Carlo runs. Algorithm performance is measured in the
probability of correctly estimating the set of integers N for a
given measurement noise level, i.e., the probability of a cor-
rect signal phase reconstruction. In addition, computational
complexity is also an important criterion.

Fig.2(a) shows the probabilities of correctly reconstruct-
ing signal phases for different measurement noise levels δ and
different moduli sets Λ1 and Λ2, i.e. Pr(N̂ = N|δ). In both
cases (Λ1 and Λ2), the proposed algorithm has an identical
performance to the search-based CRT algorithm in the prob-
abilities of correctly estimating both N and r. On the other
hand, Fig.2(b) shows the ratio of required CPU time. It in-
dicates that the required computational load by the proposed
algorithm is significantly less than the searching-based CRT
algorithm.

The closest point searching algorithm with an adaptive it-
eration step size plays a key role for the efficiency enhance-
ment of the proposed algorithm. We compare the computa-
tional complexity of the new derived searching algorithm with
that of the conventional algorithm presented in [7] in terms of
CPU time in Fig. 3 versus the number of signal wavelengths
used. It shows that the conventional searching algorithm in-
creases its computational overhead much faster than the pro-
posed one once the number of signal wavelengths exceed 8.
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Fig. 3: The required CPU time of proposed closest point searching algorithm and con-
ventional one versus different used number of moduli.

It is worth mentioning that if the underlying problem
satisfies the co-prime constraint, the proposed algorithm is
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(a) Probability of correctly reconstruction.
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(b) Ratio of required computation time.

Fig. 2: Comparison of the proposed algorithm and searching-based CRT algorithm vs.
the amplitude of the noise using Λ1 and Λ2, respectively.

equivalent to the closed-form lattice algorithm presented in
[5].

6. CONCLUSIONS

In this work, we present a lattice based estimator for estimat-
ing distances with phase wrapped signal measurements via
multiple synchronized frequencies. The proposed algorithm
addresses a more general situation where the co-prime con-
straint on signal wavelengths is relaxed. Furthermore, we pro-
pose an adaptive searching algorithm for finding the nearest
lattice point for a given noisy measurement on a lattice, which
greatly improves the efficiency of the proposed estimator.
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