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ABSTRACT

Self-bending wave fields exhibit an envelope that seeminglybends
in space under free-field conditions. They are created by wave fronts
that fold along a caustic. In this paper, we invert the concept by ex-
ploiting the reciprocity principle of the Helmholtz equation in order
to create a linear sensor array whose sensitivity seeminglybends in
free space in the nearfield of the array. The sensor array therefore
allows for listening around a distracting source, a jammer,or a phys-
ical object as sensitivity nulls can be placed at a defined distance. We
illustrate the operating range and the robustness of the solution based
on numerical simulations. For the presented scenario, an attenuation
of more than 50 dB in a controllable region in space is achieved in a
frequency range of more than two octaves.

Index Terms— sensor array, self-bending acoustic beams,
nearfield beamforming, null steering

1. INTRODUCTION

Self-bending wave fields were first predicted in the field of quantum
mechanics [1] and made their way to acoustics via optics [2].In op-
tics, a phase profile is imposed onto a beam of light via a phasemask,
e.g. a transparent material of appropriately varying thickness [3].
The phase profile that is imposed is taken from an optical wavefront
that forms a caustic. A caustic occurs if the family of rays that repre-
sent the wave front exhibit an envelope and are tangent to that enve-
lope. This envelope is then referred to as caustic. The same concept
was applied to acoustic fields by [4, 5] using an array of acoustic
transducers that controlled the phase profile of the evolving sound
field.

Here, we propose to invert this concept to create a sensor ar-
ray with self-bending sensitivity by exploiting the reciprocity of
the Helmholtz equation. This allows for creating confined spatial
regions of very low sensitivity so that the sensor array can listen
arounddistracting sources, jammers, or obstacles that are located at
a given distance.

A related concept in array beamforming is termednull steer-
ing [6, 7]. Here, the complex weights of a sensor array are designed
such that the sensitivity of the entire array vanishes in a given di-
rection. Typically, null steering is performed in the far-field regime
and the weights of the individual elements of the array are deter-
mined via numerical optimization. A jammer that appears in the
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same direction like the target signal cannot be attenuated using this
approach. Nearfield beamforming exploits the distance dependence
of the curvature of wave fields so that nulls can be placed at a defined
distance whereby it is typically assumed that the signal sources radi-
ate spherical waves [8, 9, 10].

We propose a new category of nearfield beamformers that use
a more advanced wave propagation model, which allows for design-
ing the distance-dependent nearfield sensitivity of the array in a more
explicit fashion. We use the example of an array of pressure micro-
phones to illustrate the approach. The results hold for any array of
isotropic sensors.

2. SELF-BENDING WAVE FRONTS

Non-spreading Airy wave packets were predicted in [1]. Theywere
theoretical constructions in the original formulation as they exhibit
infinite energy (similar to plane waves). Finite-energy approxima-
tions were then observed with light in [2]. In [4, 5], the concept was
translated to acoustics and a method for creating a sound field that
seemingly bends along a convex trajectory in free space without any
external force was presented. Obviously, the wave itself isnot ac-
celerated. Rather, the amplitude envelope of the sound fieldappears
to be bent. The concept of [4, 5] is illustrated in Fig. 1: A caustic is
pre-defined along which the wave front folds. In the high-frequency
limit, the wave front does not traverse the caustic. It is important to
note that the self-bending waves evolve only in the high-frequency
limit. This high-frequency limit is fulfilled if the considered wave-
length is much smaller than the curvature of the caustic. More gener-
ally, any significant changes to the wave amplitude have to evolve at
length scales much larger than the wavelength. Note that thecaustic
needs to be convex in order that the wave perfectly avoids a given
region in the high-frequency limit.

We choose the sample caustic from [4], which is given by the
cubic Bézier curve

B(t) = (1− t)3B0 +3t(1− t)2B1 +3(1− t)t2B2 + t3B3 , (1)

with

B0 = [0,−0.2311]T , B1 = [0.1, 0.0189]T

B2 = [0.25, 0.1689]T , B3 = [0.98,−0.3311]T ,

to allow for a direct comparison of the results. We limit our obser-
vations to thex-y-plane so that we define the four points that define
the Bézier curve asBi = [xi, yi, 0]

T . The red line in Fig. 1 il-
lustrates (1). Note that the control variablet does not represent the
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Fig. 1. Schematic of the principle of self-bending wave fronts; the
red line indicates the prescribed caustic given by (1); the gray lines
are sample tangents of the caustic; the blue/green lines aresample
wave fronts; time may evolve from blue to green as well as from
green to blue

traveled distance alongB(t), nor is it directly proportional to time
when a wave moves alongB(t).

It is illustrated in [4] how the geometric wave fronts can be con-
structed from a preset beam trajectory via Legendre transformations.
The wave fronts can then be traced back to a given reference plane
on which their phases can be evaluated. For ease of illustration, we
do not reproduce the analytic transformation but rather trace back
the wave fronts numerically.

Once the phase profile of the desired wave field is known on the
reference plane, i.e. on the plane on which the secondary sources are
located, the appropriate secondary source driving signalscan be de-
termined via Rayleigh’s first integral formula, which is given by [11]

P (x, ω) =

∫∫ ∞

−∞

2
∂

∂n
S(x, ω)

∣
∣
x=x0

︸ ︷︷ ︸

=D(x0,ω)

G(x,x0, ω)dA(x0) . (2)

P (·) denotes the harmonic scalar wave field that evolves due to the
monopole distribution along the reference plane.G(x,x0, ω) =
1
4π

e−iω/c|x−x0|

|x−x0|
is the free-field Green’s function, i.e. the spatio-

temporal transfer function of the secondary monopole sources.S(·)
is an arbitrary virtual scalar wave field that is source-freein the tar-
get half-space that is bounded by the reference plane.dA(·) is an
infinitesimal surface element.

When the secondary monopoles are driven with two times the
gradient∂/∂n of S(·) in direction normal to the boundary and eval-
uated at the boundary, then the synthesized wave fieldP (·) is identi-
cal to the virtual (prescribed) fieldS(·) inside the target half-space.
It is proven in the Appendix that the driving signalD(·) is directly
proportional to the phase of the harmonic field at the positions of the
secondary sources.

It is therefore possible to create a self-bending wave by imposing
the back traced phase profile of the self-bending wave onto a planar
array of sufficiently densely spaced transducers. This approach is
termedphase engineering[4, 5]. The amplitudes of the transducers
are set equal in [4, 5].

Planar transducer arrays are inconvenient as the required num-
ber of elements is high. When wave field synthesis inside a given
plane is targeted, then also linear arrays may be employed. The
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(a) Equal amplitude of 1 imposed on all array elements
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(b) Cosine-squared amplitude profile imposed on the array elements

Fig. 2. Sensitivity of a sample linear 51-element pressure-
microphone array of lengthL = 25λ located on they-axis; the
sensor spacing is∆y = 0.5λ; the black marks indicate the loca-
tions of the sensors; the black line represents the caustic;assuming
a frequencyf = 2000 Hz, this yieldsλ ≈ 0.17 m, L = 4.3 m,
∆y = 0.086 m

driving functionsD(·) are identical to those for planar arrays apart
from a global frequency dependent factor. This type of scenario is
termed 2.5-dimensional and is well known in sound field synthe-
sis [12]. The curvatures of the wave fronts that evolve are identical
to the prescribed ones inside the target half-plane. The control over
the amplitude decay of the synthesized field over distance tothe ar-
ray is limited. The synthesized wave field is obviously invariant with
respect to rotation about the axis through the array’s elements.

Refer to Fig. 2 for sample synthesized sound pressure fields
based on the caustic that is defined by (1) and depicted in Fig.1.
The isotropic (monopole) transducer array extends along they-axis.
Fig. 3 depicts the phase profile that was imposed on the array ele-
ments. Fig. 2(a) shows the resulting sound field when all array ele-
ments exhibit equal amplitude. This corresponds to the approaches
presented in [4, 5]. The attenuation in the quiet zone is in the order
of 20 dB compared to locations along the caustic.

Phase engineering does not indicate the amplitude weights that
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Fig. 3. Unwrapped phase profileφ(·) of the arrays depicted in Fig. 2;
the black marks indicate the values at the individual sensors
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Fig. 4. Sensitivity of a single sensor with amplitude weight 1; all
marks from Fig. 2 are included for orientation; the amplitude nor-
malization is identical to Fig. 2

need to be applied to the transducers. Still, we may expect that the
amplitudes of the transducers have significant impact on thesound
field that evolves. Fig. 2(b) shows the resulting sound field when a
cosine-squared shaped weighting is arbitrarily imposed onthe array
elements to show the effect. The difference to Fig. 2(a) is eminent.
A pronounced quiet zone evolves south of the caustic indicated by
the black line. The attenuation in the quiet zone is in the order of
60 dB compared to locations along the caustic.

The original experiments of self-bending optical fields aremore
similar to the scenario depicted in Fig. 2(b) rather than Fig. 2(a). In
those experiments, the desired phase profile was imposed on Gaus-
sian beams of light, which exhibit a bell-shape amplitude profile
along their cross-section.

3. RECIPROCITY OF THE HELMHOLTZ EQUATION

Assuming stationary conditions and time-harmonic signals, the wave
equation may be formulated conveniently in frequency domain. It is
then referred to asHelmholtz Equation[11]. This formulation is
particularly convenient as it exhibits a simple reciprocity relation:
We may swap the source and the receiver positions in a given situa-
tion [13]. In the present context, we can replace the isotropic actua-
tor array with an isotropic sensor array. The sensitivity ofthe sensor
array to a monopole source in space is identical to the strength of the
wave field caused by the actuator array at a given receiver location,
assuming that the same phase and amplitude profiles are imposed on
the actuators/sensors.

Formulated for the example of monopole sound sources and
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(a) The same scenario as in Fig. 2(b) but for a broadband signal cov-
ering two octaves; the black arrow indicates the impact of violating
the high-frequency requirement; the white arrows indicatethe impact
of spatial aliasing; the color scale is identical to Fig. 2(b); the black
circle mark the locationsx1 andx2 that are evaluated in Fig. 6
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(b) The same (monochromatic) scenario as in Fig. 2(b) but with ran-
dom displacement of the array elements along they-axis according to
a normal distribution with 0 mean and standard deviation of0.2∆y

Fig. 5. Sensitivity of a sample linear 51-element pressure-
microphone array of lengthL = 25λ located on they-axis; the
sensor spacing is∆y = 0.5λ; the black marks indicate the locations
of the sensors; the black line represents the caustic

pressure microphones, this means that the amplitude of the sound
pressure evoked by an array of monopole sources at a given location
is identical to the sensitivity of a similar pressure microphone array
to a monopole source at the considered location. Fig. 2 therefore de-
picts both scenarios. This equivalence was confirmed by the authors
via numerical simulations.

4. RESULTS

The sensor array suppresses energy originating from sources that are
located in the quiet zone. The most interesting observationis that
the quiet zone does not extend along a line as it is the case in con-
ventional farfield null steering [6, 7]. It is rather distance dependent
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Fig. 6. Transfer functions fromx1 = (10, 5) andx2 = (30, 5)
to the output of the sensor array; the setup is identical to Fig. 5(a),
i.e. the sensor spacing∆y = λ/2 at f = 2000 Hz; x1 andx2 are
marked in Fig. 5(a)

so that energy from sources at a defined distance can be suppressed.
In other words, we can listen around a jammer or around a physi-
cal obstacle. This capability is obvious when comparing thearray
sensitivity depicted in Fig. 2(b) to the sensitivity of any of the indi-
vidual sensors that the array is composed of. Refer to Fig. 4,which
shows the sensitivity of a single sensor with amplitude weight 1.
The array’s sensitivity can be several 10 dB higher than thatof a sin-
gle sensor in regions where a high sensitivity is desired andseveral
10 dB lower in regions where attenuation is desired. Note that the
largest weight that was applied to the sensors in Fig. 2(b) isalso 1.

The attenuation in the quiet zone that is achieved by the pre-
sented approach is well beyond that of conventional nearfield beam-
forming [8, 9, 10]. Note, however, that a comparison is difficult as
the presented approach requires arrays that are significantly larger
than those typically used in conventional nearfield beamforming.

4.1. Broadband Performance

Fig. 5 depicts the broadband performance of the array from Fig. 2(b).
The absolute transducer positions are identical to Fig. 2(b), i.e. the
spacing is a half wavelength atfref = 2000 Hz. A frequency range of
two octaves between0.4fref and1.6fref was sampled at intervals of
20 Hz and the complex sensitivity was accumulated. The appropriate
phase profile was determined for each frequency and the absolute
sensor positions were fixed.

Reducing the frequency tends towards violating the high-
frequency assumption underlying the approach so that more energy
spills over into the quiet zone (black arrow in Fig. 5(a)).

Increasing the frequency beyondfref violates the sampling cri-
terion. Assuming that two sensors are required per wavelength, then
the spatial aliasing frequency of the considered array is atf =
2, 000 Hz. Actually, the sampling criterion for spatial sampling is
somewhat more complicated as the resulting signal (the sensitivity)
has more spatial dimensions than the sampled signal (the phase and
amplitude profile of the array elements) [12]. Still, askingfor two
sampling points per wavelength is a convenient rule of thumb.

Interestingly, violating the sampling criterion does not immedi-
ately render void all efforts. It is rather such that side lobes arise for
the directivity that point into directions that are at smallangles to the
array (white arrows in Fig. 5(a)). A similar observation wasmade
in [4]. Note that the sampling criterion is violated by a factor of 1.6
in Fig. 5(a) yet maintaining acceptable performance.

Fig. 6 illustrates the broadband sensitivity over an even wider
frequency range for 2 selected sound source locations. The distance-
dependent sensitivity vanishes when the sampling criterion is vio-
lated by a factor of 3.5 or higher.

4.2. Robustness

The underlying filter-and-sum design of the beamformer provides
good robustness [6, 7]. This is illustrated in Fig. 5(b), which depicts
the same monochromatic scenario as is Fig. 2(b) but with a random
displacement of the array elements along they-axis according to a
normal distribution with 0 mean and standard deviation of 20% of
the inter-element spacing∆y. Note that this constitutes a massive
displacement. Yet, the array achieves an attenuation of several 10 dB
in the quiet zone with respect to the most sensitive locations.

5. CONCLUSIONS

We proposed to invert the concept of self-bending wave fronts to
create a nearfield sensor array with self-bending sensitivity. Such an
array allows for listening around a distracting source or anobstacle.
The approach for determining the phase profile that is imposed on
the sensors was justified via Rayleigh’s first integral formula. We
illustrated that the sensors’ amplitude profile can have substantial
impact on the performance of the array. Robustness and broadband
performance were also investigated. We showed that the attenuation
in the quiet zone can be maintained even for sensor spacings that are
slightly larger than half a wavelength.

APPENDIX: DERIVATION OF THE SECONDARY SOURCE
PHASE PROFILE

Consider the driving functionD(x0, ω) for the secondary source at
x0 to synthesize a sound pressure fieldS(x, ω) as given by (2). The
directional gradient∂

∂n
is defined as [14]

∂

∂n
= cosαn sin βn

∂

∂x
+ sinαn sin βn

∂

∂y
+ cosβn

∂

∂z
, (3)

with αn being the azimuth of the orientation ofn andβn being the
colatitude. For the present case ofn pointing in positivex-direction,
∂/∂n simplifies to∂/∂x.

Recall that we assume stationary conditions and time-harmonic
signals in this paper. We may expressS(x, ω) as

S(x, ω) = A(x, ω)eiφ(x,ω) (4)

with purely real amplitudeA(x, ω) = |S(x, ω)| and purely real
phaseφ(x, ω) = ∠S(x, ω). Differentiation of (4) with respect to
any of the Cartesian dimensions yields

(

A(x, ω)eiφ(x,ω)
)′

= A′(x, ω)eiφ(x,ω) + A(x, ω)
(

eiφ(x,ω)
)′

=
[
A′(x, ω) + A(x, ω)iφ′(x, ω)

]
eiφ(x,ω)

⋍ A(x, ω)φ′(x, ω)eiφ(x,ω)+iπ
2 , (5)

where in the last step we made use of the stipulated assumption that
the high-frequency limit applies, i.e.

∣
∣ ∂
∂n

A(x, ω)
∣
∣ ≪

∣
∣ω
c
nA(x, ω)

∣
∣,

which is known as theeikonal approximation[15].

Recall that (2) states thatD(x0, ω) ∝
(

A(x, ω)eiφ(x,ω)
)′ ∣

∣
x=x0

.

We can deduce from (5) that, in the high-frequency limit, thephase
profile φ(x0, ω) of the driving functionD(x0, ω) is identical to
the phase profile of the desired sound field on the secondary source
contour and the termA(x, ω)φ′(x, ω) in (5) represents the (purely
real) weight profile to be applied.

2889



6. REFERENCES

[1] Michael V. Berry and Nandor L. Balazs, “Nonspreading wave
packets,”A. J. Phys., vol. 47, no. 3, pp. 264–267, Mar. 1979.

[2] Georgios A. Siviloglou and Demetrios N. Christodoulides,
“Accelerating finite energy Airy beams,”Optics Letters, vol.
32, no. 8, Apr. 2007.

[3] Elad Greenfield, Mordechai Segev, Wiktor Walasik, and Oren
Raz, “Accelerating light beams along arbitrary convex trajec-
tories,” Phys. Rev. Lett., vol. 106, no. 213902, May 2011.

[4] Peng Zhang, Tongcang Li, Jie Zhu, Xuefeng Zhu, Sui Yang,
Yuan Wang, Xiaobo Yin, and Xiang Zhang, “Generation of
acoustic self-bending and bottle beams by phase engineering,”
Nature Communications, vol. 5, no. 4316, pp. 1–9, 2014.

[5] Sipei Zhao, Yuxiang Hu, Jing Lu, Xiaojun Qiu, Jianchun
Cheng, and Ian Burnett, “Delivering sound energy along an ar-
bitrary convex trajectory,”Scientific Reports, vol. 4, no. 6628,
pp. 1–6, 2014.

[6] Barry D. van Veen and Kevin M. Buckley, “Beamforming: A
versatile approach to spatial filtering,”IEEE ASSP Magazine,
vol. 5, pp. 4–24, Apr. 1988.

[7] Harry L. van Trees,Optimum Array Processing, Wiley, New
York, 2002.

[8] H. Lebret and S. Boyd, “Antenna array pattern synthesis via
convex optimization,” IEEE Transactions on Signal Process-
ing, vol. 45, no. 3, pp. 526–532, Mar. 1997.

[9] J. R. Zheng, R. A. Goubran, and M. El-Tanany, “Robust
near-field adaptive beamforming with distance discrimination,”
IEEE Transactions on Speech and Audio Processing, vol. 12,
no. 5, pp. 478–488, Sept. 2004.

[10] Etan Fisher and Boaz Rafaely, “Near-field spherical micro-
phone array processing with radial filtering,”IEEE TASL, vol.
19, no. 2, pp. 256–265, Feb. 2011.

[11] Earl Williams, Fourier Acoustics: Sound Radiation and
Nearfield Acoustical Holography, Academic Press, London,
UK, 1999.

[12] Jens Ahrens, Analytic Methods of Sound Field Synthesis,
Springer-Verlag, Berlin, Heidelberg, 2012.

[13] Philip M. Morse and Herman Feshbach,Methods of The-
oretical Physics, Feshbach Publishing, Minneapolis, 1953
(reprinted 1981).

[14] George B. Arfken and Hans J. Weber,Mathematical Methods
for Physicists, Elsevier Academic Press, Burlington, MA, sixth
edition, 2005.

[15] Max Born and Emil Wolf, Principles of Optics, Pergamon
Press, Oxford, UK, fourth edition, 1970.

2890


