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ABSTRACT

This paper studies distributionally robust chance-constrained
minimum variance beamforming. In contrast to determin-
istic modeling of the steering vector, our approach models
the uncertainty statistically via distributions. We select the
weights that minimize the combined output power subject to
the distributionally robust chance constraint that for all dis-
tributions in the uncertainty set, the gain should exceed unity
with high probability. Our discussion begins with the sim-
plest case where the distributional set contains only Gaussian
distribution; then we derive the robust weights for three distri-
butional sets, namely, the set of (central symmetric) distribu-
tions with known mean and covariance, and a distributional
model where the mean is known, the components are inde-
pendent and belong to some known bounded intervals. It can
be seen that these four robust beamformers provide statistical
interpretation for the deterministic counterpart. Finally, we
demonstrate the performance of these robust beamformers vi-
a several numerical examples.

Index Terms— Minimum variance beamforming, chance
constraint, distributionally robust optimization

1. INTRODUCTION

Minimum variance beamforming (MVB) [1] is a powerful
technique, which finds applications in many areas [4], [5].
Many approaches have been proposed to improve its robust-
ness against small sample size and model errors. Traditional
approaches towards this end include [2]–[4]. More recent ro-
bust approaches include [6]–[10]. Generally, there are two ap-
proaches to designing these robust minimum variance beam-
formers (RMVBs). The first models the underlying array s-
teering vector as a deterministic vector lying in some bounded
sets, which results in the robust designs [6]–[8]. The second
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models the uncertainty statistically via distributions: the au-
thors in [9] derived the robust beamformers for two types of
distributional sets, namely, Gaussian distribution and a set of
distributions with known mean and covariance, providing s-
tatistical interpretation for [7]; in [10], the authors developed
the distributionally RMVB under first-order moment uncer-
tainty, extending the uncertainty set from an ellipsoid [6] to a
more general one. As noted, the chance-constrained version
of [7] was studied in [9], whereas the chance-constrained ver-
sion of [6] has not been investigated yet.

Inspired by the results on distributionally robust optimiza-
tion [12]–[15], this paper studies the distributionally robust
chance-constrained minimum variance beamforming, specif-
ically, the chance-constrained version of [6]. Beginning with
the simplest case where the distributional set contains only
Gaussian distribution, we derive the robust beamformers for
three distributional sets, providing statistical interpretation for
[6]. Finally, we compare the performance of these robust
beamformers via several numerical examples.

2. BACKGROUND

Consider a generic array of N sensors from where K snap-
shots are obtained. Let y(k) ∈ CN be the snapshot obtained
at the kth sample instant (k = 1, . . . ,K). Each of these snap-
shots can be written as

y(k) = a(θ)s(k) + e(k), (1)

where a(θ) ∈ CN denotes the steering vector of the desired
signal s(k) impinging from direction θ, and e(k) ∈ CN mod-
els the effect of both interference and noise. Let w be the
weight vector of the beamformer; then its combined output
can be expressed as follows:

yc(k) = w∗y(k) = w∗a(θ)s(k) +w∗e(k). (2)

If a(θ) and Ry , E{y(k)y(k)∗} are known, the beamformer

wopt =
R−1

y a(θ)

a(θ)∗R−1
y a(θ)

(3)
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is the optimal linear combiner that maximizes the output SIN-
R. However, in practice, Ry is rarely known, and is replaced
by R̂y = 1

K

∑K
k=1 y(k)y(k)

∗. The beamformer using R̂y is
referred to as the MVB [1], and is given by

wMV =
R̂−1

y a(θ)

a(θ)∗R̂−1
y a(θ)

. (4)

Unfortunately, the use of R̂y in lieu of Ry is known to
degrade the output SINR, especially in the case where the
knowledge of a(θ) is imperfect as well. A simple approach
to improve its robustness is the DL beamformer [2]

wDL =
(R̂y + µI)−1a(θ)

a(θ)∗(R̂y + µI)−1a(θ)
. (5)

Unfortunately, the major difficulty in implementing (5) is se-
lection of the parameter µ. To alleviate this drawback, more
theoretically rigorous RMVBs are derived respectively in [6]–
[8]. The key idea of the RMVB derived in [6] is to model the
uncertainty via a 2N -dimensional real ellipsoid E(c,P) =
{x | (x− c)TP−1(x− c) ≤ 1} where P ≽ 0, and to design
the weight vector as the solution of

min
w

w∗R̂yw

s.t. inf
a∈E(c,P)

Rew∗a(θ) ≥ 1. (6)

Let P = (P
1
2 )2, where (P

1
2 )T = P

1
2 ; then E(c,P) can be

reparameterized as {P 1
2u+ c | ∥u∥2 ≤ 1}. By introducing

a =

[
Rea(θ)
Ima(θ)

]
x =

[
Rew
Imw

]
R̂ =

[
ReR̂y −ImR̂y

ImR̂y ReR̂y

]
,

(6) can be rewritten into the real-valued form:

min
x

xT R̂x

s.t. min
a∈E(c,P)

xTa ≥ 1. (7)

Applying the Cauchy inequality, we can simplify (7) as

min
x

xT R̂x

s.t. ∥P 1
2x∥2 = cTx− 1, (8)

which, as shown in [6], can be solved in O
(
(2N)3

)
by La-

grange multiplier methods.

3. DISTRIBUTIONALLY ROBUST
CHANCE-CONSTRAINED BEAMFORMING

In this section, we will model a statistically via distribution-
s, and study distributionally robust chance-constrained beam-
forming for four distributional uncertainty sets.

3.1. Gaussian Distribution

We first consider the following beamforming problem

min
x

xT R̂x

s.t.Pr{xTa ≥ 1} ≥ 1− ϵ, (9)

where a is Gaussian, i.e., a ∼ N (µa,Ca) and 1 > ϵ > 0.
Proposition 1: Suppose a ∼ N (µa,Ca). For 1 > ϵ > 0,

the chance constraint

Pr{xTa ≥ 1} ≥ 1− ϵ (10)

holds if and only if

−Φ−1(ϵ)∥C
1
2
a x∥2 ≤ µT

a x− 1, (11)

holds, where Φ(x) = 1√
2π

∫ x

−∞ exp(−u2

2 ) du.

Proof. Our proof is tailored from the proof of theorem 10.4.1
in [11]. Note that xTa ∼ N (xTµa,x

TCax). For x with
xTCax > 0, then we have

Pr{xTa ≥ 1} =1−Pr{x
Ta− xTµa√

xTCax
≤ 1− xTµa√

xTCax
}

=1− Φ(
1− xTµa√
xTCax

) ≥ 1− ϵ. (12)

Thus, we have Φ( 1−xTµa√
xTCax

) ≤ ϵ, and this is equivalent to

(11). On the other hand, if xTCax = 0, for 1 > ϵ > 0, the e-
quality xTa = xTµa holds with probability 1, and evidently,
(10) and (11) are equivalent.

According to Proposition 1, (9) can be rewritten as

min
x

xT R̂x

s.t. − Φ−1(ϵ)∥C
1
2
a x∥2 ≤ µT

a x− 1, (13)

which is equivalent to

min
x

xT R̂x

s.t. − Φ−1(ϵ)∥C
1
2
a x∥2 = µT

a x− 1. (14)

The proof of their equivalence here is simple: for any given
feasible x with −Φ−1(ϵ)∥C

1
2
a x∥2 < µT

a x− 1, a point

x̄ =
x

µT
a x+Φ−1(ϵ)∥C

1
2
a x∥2

(15)

can be constructed such that −Φ−1(ϵ)∥C
1
2
a x̄∥2 = µT

a x̄ − 1
and meanwhile x̄T R̂x̄ < xT R̂x holds, thus establishing their
equivalence. To solve (14), three cases of ϵ are considered: a)
if 1 > ϵ > 0.5, then −Φ−1(ϵ) < 0; (13) is equivalent to
a problem of minimizing a convex quadratic function subject
to a nonconvex quadratic constraint and an affine constraint,
which seems to be intractable; b) if ϵ = 0.5, (14) is an MVB
pointed at µa; c) if 0.5 > ϵ > 0, (14) is exactly (8) with

P
1
2 = −Φ−1(ϵ)C

1
2
a and c = µa.
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3.2. Distributions with Known Mean and Covariance

Here we consider the situation where a belongs to the family
of distribution with known mean µa and covariance Ca, i.e.,
a ∼ (µa,Ca). The corresponding beamforming problem can
be written down as follows:

min
x

xT R̂x

s.t. inf
a∼(µa,Ca)

Pr{xTa ≥ 1} ≥ 1− ϵ. (16)

Proposition 2: Suppose a ∼ (µa,Ca) and 1 > ϵ > 0.
The set of x vector satisfying

inf
a∼(µa,Ca)

Pr{xTa ≥ 1} ≥ 1− ϵ (17)

is the same as those satisfying√
(1− ϵ)/ϵ∥C

1
2
a x∥2 ≤ µT

a x− 1. (18)

Proof. Since a ∼ (µa,Ca), we have xTa ∼ (xTµa,x
TCax),

and the chance constraint can be rewritten as

sup
xT a∼(xTµa,x

TCax)

Pr{xTa < 1} ≤ ϵ. (19)

We initially consider the case where xTCax ̸= 0. According
to the generalized Chebyshev inequality [12], [13], we have

sup
xT a∼(xTµa,x

TCax)

Pr{xTa < 1} (20)

=

{
xTCax/

(
xTCax+ (xTµa − 1)2

)
, if xTµa ≥ 1,

1, if xTµa < 1.

Under the assumption 1 > ϵ > 0, (19) reduces to two con-
straints xTCax/

(
xTCax+ (xTµa − 1)2

)
≤ ϵ and xTµa ≥

1, or equivalently,
√
(1− ϵ)/ϵ∥C

1
2
a x∥2 ≤ µT

a x− 1.
When xTCax = 0, the equality xTa = xTµa holds with

probability 1. Thus for 1 > ϵ > 0, we simply have

sup
xT a∼(xTµa,x

TCax)

Pr{xTa < 1} = 0 ≤ ϵ ⇐⇒ µT
a x ≥ 1,

which completes our proof.

Consequently, (16) is equivalent to

min
x

xT R̂x

s.t.
√
(1− ϵ)/ϵ∥C

1
2
a x∥2 = µT

a x− 1. (21)

3.3. Centrally Symmetric Distributions with Known
Mean and Covariance

Consider the beamforming problem

min
x

xT R̂x

s.t. inf
a∼(µa,Ca)S

Pr{xTa ≥ 1} ≥ 1− ϵ, (22)

where, in addition to µa and Ca, the distribution of a is
known to be centrally symmetric, i.e., a ∼ (µa,Ca)S . The
distribution Pa is said to be centrally symmetric, if Pa(µa +
B) = Pa(µa − B) for all Borel sets B ∈ R2N .

Proposition 3: Suppose a ∼ (µa,Ca)S . If 0.5 > ϵ > 0,
the distributionally robust chance constraint

inf
a∼(µa,Ca)S

Pr{xTa ≥ 1} ≥ 1− ϵ (23)

is equivalent to√
1/(2ϵ)∥C

1
2
a x∥2 ≤ µT

a x− 1. (24)

For 1 > ϵ ≥ 0.5, (23) reduces to xTµa ≥ 1.

Proof. Since a ∼ (µa,Ca)S , we have xTa ∼ (xTµa,x
TCax)S ,

and the chance constraint can be rewritten as

sup
xT a∼(xTµa,x

TCax)S

Pr{xTa < 1} ≤ ϵ. (25)

For x with xTCax > 0, applying the generalized Chebyshev
inequality for symmetric distribution [13], [15], we have

sup
xT a∼(xTµa,x

TCax)S

Pr{xTa < 1} (26)

=


0.5min{1, xTCax/(x

Tµa − 1)2}, if xTµa > 1,

0.5, if xTµa = 1,

1, if xTµa < 1.

If 1 > ϵ ≥ 0.5, according to (26), (25) reduces to xTµa ≥
1. For 0.5 > ϵ > 0, the chance constraint is equivalent to
0.5min{1, xTCax/(x

Tµa − 1)2} ≤ ϵ and xTµa > 1, or

equivalently,
√

1/(2ϵ)∥C
1
2
a x∥2 ≤ µT

a x− 1.
When xTCax = 0, for 1 > ϵ > 0, xTa = xTµa holds

with probability 1, and thus (24) and (25) are equivalent.

Therefore, for 0.5 > ϵ > 0, (22) is equivalent to

min
x

xT R̂x

s.t.
√
1/(2ϵ)∥C

1
2
a x∥2 = µT

a x− 1. (27)

When 1 > ϵ ≥ 0.5, (22) is exactly the MVB point at µa.

3.4. Variations in independent and bounded intervals

Here we consider the following uncertainty model: a = µa+
ω, where the mean µa is known and ω1, . . . ,ω2N are inde-
pendent random variables such that ∀i, ωi takes its values in
[li, ui] with probability 1. Note that ∀i, ui ≥ 0 ≥ li Let
(µa,D)I be the family of distributions of a satisfying the
above condition, where D = diag{u1− l1, . . . , u2N − l2N}.
The robust beamformng problem can be formulated as

min
x

xT R̂x

s.t. inf
a∼(µa,D)I

Pr{xTa ≥ 1} ≥ 1− ϵ. (28)
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Proposition 4: For 1 > ϵ > 0, the robust chance constraint

sup
a∼(µa,D)I

Pr{xTa < 1} ≤ ϵ (29)

holds if √
−0.5 ln(ϵ)∥Dx∥2 ≤ µT

a x− 1. (30)

Proof. We first write the minimization in the constraint as

sup
a∼(µa,D)I

Pr{xTa < 1} ≤ ϵ. (31)

For x with Dx ̸= 0, applying the Hoeffding’s inequality [15],
[16], we have that

Pr{xTa < 1} =Pr{−xTω > xTµa − 1}

≤ exp{− 2(xTµa − 1)2∑2N
i=1 x

2
i (ui − li)2

}. (32)

Note that (30) implies exp{− 2(xTµa−1)2∑2N
i=1 x2

i (ui−li)2
} ≤ ϵ; then

Pr{xTa < 1} ≤ ϵ holds for all a ∼ (µa,D)I . For Dx = 0,
from (30), we have µT

a x ≥ 1. We now show Pr{xTa <
1} = 0, and thus Pr{xTa < 1} ≤ ϵ. To show Pr{xTa <
1} = 0, or equivalently, Pr{xTω ≥ 1 − xTµa} = 1, we
prove Pr{xTω ≥ 1− xTµa} ≥ Pr{xTω = 0} = 1. Since
Dx = 0, we have (ui − li)xi = 0, ∀i. Two cases of i are
discussed: a) if ui − li > 0, then xi = 0; b) if ui = li, from
ui ≥ 0 ≥ li, then ωi = 0 holds with probability 1. As a
result, Pr{xTω = 0} = 1, which completes our proof.

As a result, a tractable approximation of (28) is given by

min
x

xT R̂x

s.t.
√

−0.5 ln(ϵ)∥Dx∥2 = µT
a x− 1. (33)

When ϵ = 1, (33) is the MVB pointed at µa.

4. NUMERICAL RESULTS

We present below three numerical examples to demonstrate
the performance of (14), (21), (27), and (33). In all exam-
ples, a ten-sensor uniform linear array centered at the origin
and spaced 0.4-wavelength apart is considered. Both the sen-
sor position error and the angle of arrival (AOA) error are
simulated: the position of each element is perturbed indepen-
dently by a Gaussian vector N (0, (0.015λ)2I2×2); θ1 is mod-
eled as a binary random variable with probability Pr{θ1 =
5◦} = 0.8 and Pr{θ1 = 6◦} = 0.2. The observation-
s are generated as follows: mθ1 = 100 realizations of θ1
are collected; for each value of θ1, mp = 1000 samples
are independently generated, i.e. {a1i }i and {a2i }i. Then
µa and Ca can approximately determined from the data, i.e.,
µa = (m1â1 +m2â2)/mθ1 , Ca =

(
m1

∑mp

i=1(a
1
i −µa)

2 +

m2

∑mp

i=1(a
2
i − µa)

2
)
/(mθ1mp), where m1 and m2 denote

the numbers that {θ1 = 5◦} and {θ1 = 6◦} are observed.
Fig. 1 shows the output SINR as functions of the snapshot

and the SNR. In this example, six interferers with powers all
equal to 20 dB impinge from θ1 = 15◦, θ2 = 25◦, θ3 = 40◦,
θ4 = −5◦, θ5 = −15◦, and θ6 = −30◦. From Fig. 1, we can
see that (19) performs the most robust, yielding the highest
SINR. Let κ1 = −Φ−1(ϵ), 0.5 ≥ ϵ ≥ 0, κ2 =

√
(1− ϵ)/ϵ,

κ3 =
√
1/(2ϵ), 0.5 ≥ ϵ ≥ 0, κ3 = 0, 1 ≥ ϵ > 0.5, and κ4 =√

−0.5 ln(ϵ). Fig. 2(a) plots κ1, κ2, κ3, and κ4. For (14),
(21), (27), we can see that κ1 ≥ κ2 ≥ κ3 for 0.5 ≥ ϵ ≥ 0
and κ2 ≥ κ3 for 1 ≥ ϵ ≥ 0.5, indicating that (21) maintains
the gain for the largest region. Fig. 2(b) shows the SINR as
a function of ϵ, where K = 250 and SINR=10 dB. We note
that (21) achieves its best SINR at about 0.1, whereas (33), as
an approximation, achieves its best SINR at about 0.85.
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Fig. 1. SINR comparison with ϵ = 0.3: (a) SINR versus K
with SNR =10 dB; SINR versus SNR with K = 250.

0 0.2 0.4 0.6 0.8 1
−1

0

1

2

3

4

5

ε

F
un

ct
io

n 
V

al
ue

 

 
κ

1

κ
2

κ
3

κ
4

(a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2

−1

0

1

2

3

4

5

6

7

8

ε

O
ut

pu
t S

IN
R

 (
dB

)

 

 

Optimal output SINR
Beamformer (14)
Beamformer (21)
Beamformer (27)
Beamformer (33)

(b)

Fig. 2. (a) Plots of κ1, κ2, κ3, and κ4, (b) SINR versus ϵ.

5. CONCLUSIONS

This paper studies distributionally robust chance-constrained
minimum variance beamforming. The essence of our ap-
proach is to employ the distributional sets and to use distri-
butionally robust chance-constraints to design the weights.
The beamformer is first derived for Gaussian model, and
then further developed for more complex distributional sets,
providing statistical interpretation to the deterministic coun-
terpart. Finally, simulations are conducted to compare the
performance of these beamformers.
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