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ABSTRACT

We propose a new, general, method for spatial filtering by beam-
forming. The desired filter, specified analytically on an n-dimensional
sphere, is extended to n+1-dimensional Euclidean space. A continu-
ous beamforming function is then obtained by the n+1-dimensional
Fourier transform of the extended filter. The beamforming weight at
a given array element corresponds then to a sample of the function
at the array element location.

The scheme is a generalisation of focused beamforming on a sin-
gle point by phase difference alignment. The analytic framework al-
lows tractable, stable determination of beamforming weights, and for
clear filter specification. By avoiding approximating a Dirac, desired
areas can be covered with reduced side lobes. Multiple areas may be
targeted simultaneously. In communications applications, channel
information updates can be reduced, and movement accounted for.
A WiFi demonstration shows that more flexible beam-shapes can be
beneficial for real-life examples, factoring in attenuation.

Index Terms— Beamforming, array signal processing, mobile
communications, spatial filtering

1. INTRODUCTION

Most array beamforming is of the focused variety: have a single
point in mind, and steer by phase difference alignment to get there
as best you can [1, 2]. While this minimises noise in and around the
target, there are drawbacks. A Dirac is a difficult (impossible) thing
to approximate, and significant signal sneaks in from side lobes. It
is also particularly sensitive. Small errors in direction of interest
estimates can have consequences.

Devices, and the people carrying them, often move, and con-
stant channel updates are required to account for this. For example,
802.11ac WiFi requires a single device to relay its channel state ev-
ery 0.1s. For MU-MIMO, beamforming to multiple users at the same
time requires communication on the order of 0.01s [3].

And ultimately, many applications want to target around general
areas of interest. A radio astronomer often wants a portion of the
sky. An ultrasound picture is a scan of a region. Mobile phone mast
designers want to concentrate energy where most devices are.

In the paper we outline a technique we call flexibeam for de-
termining beamforming weights that, when applied, approximates a
given spatial filter design. A key concept is that of a beamforming
function w(p) defined over Euclidean space (the examples shown
are either 2 or 3D). Weights are then samples of this function at ar-
ray element positions. An antenna located at position p will have
weight w(p) (for unit wavelength).

To arrive at this function, we take the spatial filter specified over
the sphere Sn (e.g., the circle S1 or sphere S2), and extend it to n+1
dimensional Euclidean space. The beamforming function is then

defined as the n + 1 dimensional Fourier transform of the extended
filter.

The scheme is a generalisation of focused beamforming, and far
more flexible (hence the name). The analytic framework turns out
to be a natural extension that allows tractable, numerically stable
determination of beamforming weights, and for clear specification
of the desired filter.

Aiming for areas rather than points minimises the required up-
date rate, and reduces the communication requirement. Arbitrary
distributions of devices can be targeted at once. Side lobes and
power requirements can be reduced substantially. In MIMO sys-
tems, the optimisation tradeoff between (focused) beamforming and
spatial diversity (multiple replicas of the radio signal from different
directions) [4] can be circumvented.

We use WiFi transmission as an illustration for flexibeam. From
a specified preference radiation pattern, a spatial filter and its exten-
sion are obtained, compensation for attenuation performed, and the
beamforming derived.

1.1. Relation to prior work

Matched beamforming1 is the most extensively used method in prac-
tise. A vast collection of data-dependent beamformers seek to opti-
mise certain features of the incoming signals [2, 6]. They usually
offer better performance than data-independent techniques, but are
computationally expensive and need to be calculated on-the-fly. For
example, the popular Maximum Variance Directionless Response
(MVDR) [7] beamformer seeks to maximise signal power from a
given direction and to suppress other contributions.

The idea to spatially filter using beamforming is not new[2].
However, despite the apparent versatility of the technique, existing
beamforming strategies suffer from a lack of flexibility, and do not
offer a way to approximate arbitrary filters. Some are restrictive
in the array layout – for example, beamforming with linearly and
equally spaced or planar and factorable arrays is a polynomial ap-
proximation problem, and a range of filters can be achieved with
the Dolph-Chebyshev tapering method [2]. Others involve an ill-
posed optimisation, that often result in weights with very large mod-
uli, and hence unreliable beam-shapes and noise magnification [2].
For spherical arrays, bandwidth limited filters can be achieved by
beamforming in the spherical domain [6].

Collaborative randomised beamforming [8] seeks to maximise
information, after correlation, of beams coming from different
collections of antennas. The result is a wider field of view than
matched beamforming. Combining flexibeam in a collaborative
fashion would, in our opinion, be worth exploring.

1Known by many names such as delay and sum [2, 1], phase and delay,
conjugate beamforming, beam steering/focusing [5] etc.
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2. FLEXIBEAM

2.1. Background

Beam-shapes designed using flexibeam can be used to receive or
transmit. For simplicity, we explain the receiving case. Consider an
array of L omni-directional receiving antennas, with unit gains and
positions p1, . . . ,pL ∈ Rn. A beamformed signal y(t) is formed by
combining linearly each antenna’s signal xi(t) ∈ C using complex
weights wi:

y(t) =

L∑
i=1

w
∗
i xi(t). (1)

Assume emitting sources are in the far field, and hence can be seen
as lying on the unit sphere Sn−1. Restrict also emitted source sig-
nals to narrow-band. Without loss of generality, let the wavelength
of the incoming signals be 1. Hence, the signal at the ith antenna,
originating from direction r ∈ Sn−1 admits the so-called baseband
representation and can be written,

xi(t) =

∫
Sn−1

s(t, r)e
−j2π〈r,pi〉dΩ + ni(t), (2)

where p0 ∈ Rn is the chosen phase reference centre, and ni(t) is
complex additive noise. Plugging (2) into (1), yields:

y(t) =

∫
Sn−1

s(t, r)b
∗
(r)dΩ +

L∑
i=1

w
∗
i ni(t),

where b(r) =
∑L
i=1 wie

j2π〈r,pi〉 is the array beam-shape. Beam-
forming is effectively spatially filtering the incoming signals by the
beam-shape b∗(r).

2.2. Beamforming defined over a field

Flexibeam’s main departure from the state-of-the-art is to consider
a notional continuous field of antennas covering Rn. Over this field
is a sensor function x(t,p) ∈ L2

(Rn,C), which describes the sig-
nal observable at position p and time t, and extends (2) to cover all
points in Rn:

x(t,p) =

∫
Sn−1

s(t, r)e
−j2π〈r,p〉

dΩ + n(t,p),

where n(t,p) ∈ L2
(Rn,C) is the noise observable at position p

and time t. The concept of beamforming weight can also be ex-
tended to all p ∈ Rn by a beamforming function w ∈ L2

(Rn,C),
and beamforming becomes a continuous inner-product between the
beamforming and sensor functions:

y(t) = 〈w(p), x(t,p)〉L2
(Rn,C)

=

∫
Rn
w
∗
(p)x(t,p)dp

=

∫
Rn
w
∗
(p)

(∫
Sn−1

s(t, r)e
−j2π〈r,p〉

dΩ + n(t,p)

)
dp

=

∫
Sn−1

s(t, r)ŵ
∗
(r)dΩ + nb(t). (3)

The beam-shape for the notional antenna field is then ŵ(r) ∈
L2

(Sn−1
,C). It re-weights the signals coming from various direc-

tions differently, and hence defines a spatial filter, which is linked to
the beamforming function through

ŵ(r) =

∫
Rn
w(p)e

j2π〈r,p〉
dp.

So far the beamforming function has been only defined over Sn−1.
We thus propose to extend it to Rn to induce an n-dimensional
Fourier transform relationship. Let then ω̂ : Rn → C be a function
whose nD Fourier transform exists, and on the hypersphere Sn−1 is
equal to the target filter we would like to achieve. We call ω̂(r) thus
designed the extended filter.

Of course, the choice of extension is not unique, and a good
design is application dependent. The beamforming function can now
be computed by the Fourier transform

w(p) =

∫
Rn
ω̂(r)e

−j2π〈r,p〉
dr, (4)

which, for an arbitrary target filter, would be calculated numerically.
However, the target and extended filter can be designed such that an
exact analytical Fourier transform is available.

For example, when ŵ(r) = δ(r − r0), where δ denotes the
Dirac delta function, then w(p) = e

−j2π〈r0,p〉. This function, once
sampled, corresponds to matched beamforming.

The n-dimensional ball indicator function,

ω̂(r) =

{
1 if r ∈ B(r0, R),

0 otherwise,
(5)

where r0 ∈ Sn−1 and B(r0, R) is the ball centered at r0 with radius
R > 0, also has an explicit Fourier transform:

w(p) = R(2π)
n/2‖2πpR‖−n/2Jn/2 (‖2πpR‖) e−j2π〈r0,p〉,

where Jn/2 is the n/2th Bessel function of the first kind.
Finally, the n-dimensional symmetric Gaussian

ω̂(r) =
1

(2π)
n/2

σ
n
e
− ‖r−r0‖

2

2σ
2 ,

with mean r0 ∈ Sn−1 and standard deviation σ, has Fourier trans-
form

w(p) = (2π)
n
e
−2π

2
σ
2‖p‖2

e
−j2π〈p,r0〉.

And of course, any linear combination of the above will also have an
analytically tractable Fourier transform.

2.3. Sampling to obtain weights

Consider now L actual antennas with positions p1, . . . ,pL ∈ Rn.
For antenna i the beamforming weight wi is w(pi)

β
, where β =√∑L

i=1 |w(pi)|
2 is a normalisation to avoid magnifying noise.

How closely the beamforming achieves the target filter over Sn
depends strongly on the number and position of the antennas. The
resultant beam-shape can be shown to be

b(r) =
ω̂(r)

β
∗

(
L∑
i=1

e
−j2π〈r,pi〉

)
∝ ω̂(r) ∗ bd(r) (6)

where bd(r) is the Point Spread Function (PSF) – also called dirty
beam in radio astronomy. Hence, the ability of the beam-shape to
approximate the target filter depends on the array layout. In partic-
ular, if the layout is sufficiently dense and isotropic, the PSF will be
well-behaved (have fast decay), and the beam-shape will be a good
approximation for the target filter.
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(a) Extended filter. Over the unit
circle it filters signals with direc-
tions 25◦ - 65◦.
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(b) Magnitude of its 2D Fourier
transform. The white dots denote
the beamforming weights.
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(c) Beam-shape obtained with
beamforming weights (white line),
which approximates relatively well
the target.
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(d) Beam-shape obtained with
matched beamforming.

Fig. 1: Filtering a range of directions with flexibeam for Θ = 40
◦

and 96 antennas. The beam-shape covers a much wider range of
directions than matched beamforming.

2.4. Example using ball indicator function

Working on the plane, suppose we were interested in signals with
directions of arrival between 25◦ and 65◦. Hence, we get a target
filter ŵ(θ) of the form

ŵ(θ) =

{
1 if θ ∈ [25

◦
, 65
◦
],

0 otherwise,

where θ is an angle on the unit circle S1 measured in degrees. One
extension ω̂(r) to R2 is the ball indicator function (5), with r0 =

(1, 1)/
√

2 ∈ S1, R =
√

2
√

1− cos Θ and Θ = 40
◦ is the an-

gular diameter of the target filter. Fig. 1a shows that over the unit
circle it is equal to the target filter w(r), while Fig. 1b shows the
resultant beamforming function w(p), and example beamforming
weights determined by the array layout. The resultant beam-shape
in Fig. 1c can be seen in general to be a good approximation. In con-
trast, matched beamforming would require steering towards many
directions to cover the same area.

For a fixed number of antennas Fig. 2a shows that for very small
Θ the beam-shape is essentially identical to the one from matched
beamforming, while for large Θ, the beam-shape struggles to cover
the whole range. For fixed Θ Fig. 2b shows that the beam-shape
becomes increasingly accurate as the number of antennas increases.

3. WIFI TRANSMISSION AS EXAMPLE

Consider the living room presented in Fig. 3. We would like to irradi-
ate the WiFi signal optimally. The room is approximately 10.5m ×
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(a) Filtering a range of directions
with flexibeam for various angles
and 96 antennas.
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◦ with
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Fig. 2: Evolution of the flexibeam beam-shape for various angles
and number of antennas.

Fig. 3: Plan of the living room overlaid with the preference function,
provided by the user. The router is in the bottom right corner.

7m, and the WiFi router is located at the bottom right corner. To
simplify, it and all other devices lie on a plane. The router has 27
antennas located at p1, · · · ,p27 ∈ R2, and arranged on three con-
centric circles of radii 5, 15 and 25cm respectively. The router centre
is designated by p0 ∈ R2.

The inhabitant indicated by the coloured regions the locations
where they are most likely to use their devices, and hence where
good power coverage is needed. This defines what we call a prefer-
ence function f : R2 → R. The goal becomes then the design of an
optimal beam-shape, which would cover the designated areas well
while compensating for signal attenuation.

As is normally the case, every broadcasting device lies in the far
field of all antennas. Moreover, the subcarriers of WiFi signals are
narrow-band channels. Thus, the model in Section 2.1 is applicable,
and the signal received by an antenna at position p ∈ R2 can be
written:

x(t,p) =

∫
S1
s(t, r)

◦
γ(r)e

−2πj〈r,p〉
dΩ,

where s(t, r) is the summation of signals coming from direction r,
and ◦γ(r) =

∫
Γr

dl
‖l−p0‖

the radial attenuation function.
Applying the beamforming function ω(p) is equivalent to apply-

ing a radial filter ŵ(r) to the signals received by the antennas from
each direction:

y(t) =

∫
S1
s(t, r)

◦
γ(r)ŵ(r)dΩ,

with ŵ(r) :=
∫∫

R2 w(p)e
2πj〈r,p〉

dp. To compensate for the at-
tenuation and yield good coverage, ŵ(r) = 1

◦
γ(r)

∫
Γr
f(l)dl can
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(c) The beamforming function.
White dots show the locations to be
sampled.
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(d) The target filter is well approxi-
mated by the beam-shape.

Fig. 4: WiFi filter design and its performance.

be chosen. Thus, the desired filter is the radial projection of f re-
weighted to compensate for attenuation. We can approximate ŵ(r)
on the circle by three Gaussians:

ŵ(θ) '
3∑
i=1

αi√
2π
e
− (θ−µi)

2

2σ
2
i , (7)

where αi, µi, σi are respectively the weight, mean and standard de-
viation characterising each Gaussian. To compute the beamforming
function w(p), inspired by the approximate decomposition (7), we
used

ω̂(x, y) =

3∑
i=1

αi
2πσi

e
− 1

2σ
2
i

[
(x−cos(µi))

2
+(y−sin(µi))

2
]
, (8)

as plotted in Fig. 4b. Then,w(p), shown in Fig. 4c, is the 2D Fourier
transform of (8). The beam-shape of the router is then

b(r) =
1

β

27∑
i=1

w
(pi
λ

)
e
j2π〈r,pi

λ
〉
, (9)

where β =
∑27
i=1 |w

(pi
λ

)
|2 is a normalisation factor. The radiation

pattern, shown in Fig. 5, covers the regions of interest well. Given
the finite number of antennas, the beam-shape approximates ŵ(r),
with unavoidable side lobes (Fig. 4d).

4. CONCLUSIONS

We observed that beamforming deployed today is primarily based on
focusing on a single point. It seemed attractive to try to generalise

Fig. 5: Coverage achieved with flexibeam. The regions of interest
are well covered by the router (sofa, desk and kitchen).

this in order to tackle problems that naturally want signal informa-
tion from spatial regions, and to avoid the side-effects of trying to
realise the most difficult filter of all: that of focusing on a single
point.

To this end, we developed a new analytical technique called flex-
ibeam that considers beamforming as a continuous function across
space, and beamforming weights as samples of this function.

The flexible design and tractable construction facilitates a broad
range of applications. On a simple example, we showed that the
target filter can be well approximated. Flexibeam takes advantage
of the ever increasing number of antennas used in arrays. We be-
lieve it has great potential in applications varying from mobile phone
networks, WiFi, ultrasound and radio astronomy. Future work will
focus on their realisation.
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