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ABSTRACT by exploiting the self-similarity of the underlying shape.

This paper presents an efficient method to 3D model com'-:or image representation, the approaches to factoring-repe

pression based on repetition detection. The propBattern- |t||ve content dhtave aI?o been ddevelzped_.t In [14L’ V\/tang fEt
B 3D Mesh Codec (PB3DMC) can achieve good rate- al. proposed to create a condensed epitome and a transfor-

distortion performance on 3D models comprising multiplem map such that all image blocks can be represented from

components. The repetition among constituent componenl%%?zgogmiie‘t):g?oenfaéﬁgi?'s Ior} ggrnT:JZ?g\’”:iﬁgt;zfdif
Is first exploited to generate a compact representation. AReometric insariance Ender translation roiation tranefo
optimal bit allocation scheme is then proposed in order t '

compress the resultant “pattern-instances” representati lon orthe|r_comb|r_1at|ons. The so-_c_alled patt_ern-_mstim
Experimental results show th&B3DMC yields a signifi- representa_ltl_on de_rlved from repetition detection is coripa
cant gain compared to the algorithms in MPEGslable ‘;ggéﬁ%e‘('c'al to improve the performance of the proposed
Complexity 3D Mesh Coding (SC3DMC) toolset, particularly )

for those models containing repetitive components. Furthe

more, a benchmark fdPB3DMC is built using444 models. In order to encode the “pattern-instances” representation
And PB3DMC is going to be published as an amendment 0" optimal bit allocation scheme is proposed in this paper. D
MPEG< standard. ifferent from the existing 3D model compression algorithms

based on repetition detection [13, 1FB3DMC determines
' the optimal quantization parameters automatically foii-var
ous data in the repetition-aware representation. Fornosta
the quantization parameter of each rotation transformasio
1. INTRODUCTION adaptively decided by the parameter of global quality awed th
scale of the corresponding component. To the best of our
The easy access to 3D modeling tools and rapid growth of orknowledge, it is the first time to concentrate on bit-rate-all
line modeling communities make the quantity and complexication in the compression techniques based on repetition de
ty of 3D models increased continuously. And the widely usedection. And compared to the "instancing” techniques wjidel
3D modeling tools usually generate 3D models containing ased by real-time engines for gaming, one important advan-
significant number of components, especially when creatingage of the proposed method is that the encoder requires no
complex objects. Thus, efficient compression solutions argrior knowledge of the inpudD models.
required to overcome the challenges in storage and transmis
sion. For multi-component 3D models, it is straightforward |, this paper, a benchmark is built f@B3DMC includ-

to decompose them and compress each individual COMpoNngRy 444 models provided by MyMultiMediaWorld.com [16].
using previous methods based on geometry primitives, SUCRs gemonstrated in experimental resulR83DMC makes
as vertex spatial position [1, 2], adjacency [3, 4, 5], Il 5 gignificant gain compared to the algorithms in MPEG's
ometric features [6, 7]. . SC3DMC [17] toolset. And the bitstream format and de-
However, there usually exists redundancy among thgqger ofPB3DMC are going to be published as one of the
structures of constituent components. To improve the effiz nandments in MPEG-Part 16 [18]. The 3D graphics
ciency of 3D model coding techniques, the structural ré9Ugroup of MPEG (MPEG-3DGC) has standardized several
larity can be exploited. Recently, symmetry detection on 3Dcompression techniques f&D models, which are intro-
models has received much attention [8, 9, 10]. Therefoee, thy,ced in MPEG4 Part2, Visual (3DMC) and MPEG4 Part
detected symmetries can produce a compact representatiof animation Framework eXtension (3DMC-Extension and
of 3D model, such as a tree-structure [11, 8] or a hierarSC3DMC).SC3DMCis introduced in MPEGt Part16 AMD
chy [12]. Digne et al. [13] proposed to compress point cloud; i year2009, which consists of different ways with dif-

Thanks to the support from Institute of Software Chinesedecay of ~ ferent Cc_’mp_reSSion p_erformances and complexities togalar
Sciences. the application domain of MPE@-3DG.

Index Terms— 3D model, Coding, repetitive component
bit allocation, MPEG
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The framework of PBDMC encoder is as shown in Fig.1. | : | T compresseay | e
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The inputs are th8D model to be encoded and one quantiza- : L ol |
tion parameteQP given by the user. Then the maximum re- | | o o tanees
. . ompressed Unique Parts
construction allowedylaxErr, could be derived fromQP and | } e e e R
L I=——=_ ! L mm oo =

the boundingbox of the input model. The encoder consists of '----+
three steps, repetition discovery, repetition compresaitd

instance verification. Fig. 1. PB3DMC encoder framework.

The first step is achieved by pair-wise component compar- ) ) o
ison, which can be accelerated by grouping components usirfgl: Bit Allocation Optimization
their feature descriptors. MaxErr is used as the threshatd d Tpe optimal values o) Pp, QPr andQP,, are automati-
ing the comparison. Then the inptD model is transformed  ¢4ly determined from QP by figuring out their contribution
into the new representation consistingpatterns, instances {4 the final reconstruction error. During the following dis-
andunique parts. Here a pattern refers to the representative,ssion, the vertex-vertex error is used as the reconstruct

geometry of a discovered repetitive structure, which h@mbe grror. Here the goal is to guarantee that the maximum recon-
aligned with the coordinate system. An instance is reptesengirction error is less than MaxErr.

ed by the transformation matrikI, from its corresponding Any vertexv on any instance component can be represent-
pattern to this instance part, and the related pattern'®Ds o4 by
further decomposed into translation vec®ft,, ¢,,t.) and V=Rp+T (1)

rotation matrixR , which is represented by the Euler angles

(1,0,¢) (0 € [~im,—37], ¥, ¢ € [—m,7]). The unique wherep is the correspondent vertex on patteR andT are

parts are those not belonging to any repetitive structures. ~ the rotation matrix and translation vector frgmto v.
) Let vy denote the reconstructed vertex. Then the recon-
In the second step, the patterns and unique parts can Bgyction error o can be calculated as:
encoded by any matu® model codecT and (v, 6, ¢) are

quantized and further compressed by an entropy cagdé, [V —va| = [[(Rp — Rapg) + (T — Ta)||

QPr andQ P4, the quantization parameters of pattéfrand < |IRp —Rap|| + [[Ra(p — )|l + | T — T4l
(v, 0, ¢), are automatically determined by an optimal bit al- < |(R=Ra)p|| + || Ap|| + AT,

location scheme which could make the maximum reconstruc- @)

tion error meets the user requirement, i.e. MaxErr. Esfigcia

to avoid unnecessary bit-rate loss, different instanceslifs ~ wherep,, R; andT are the reconstructer) R andT. Ap =
ferent values of) P4, denoted ag)P,,, which are related p — p, andAT = T — T, are the reconstruction error pf
with the correspondent component scales. More details wihndT.

be given later. For unique parts, QP is used as its quantiza- We have

tion parameter. Furthermore, to guarantee the requireshrec

struction error, an instance verification step is follow€His [(R=Ra)p[l < coA0maz|Ppaq |l 3

step reconstructs every instance component to verify veneth . o
or not its maximum reconstruction error is less than MaxErrWhereAe"m is the upper bound of quantization error of the

Those fail to pass the test are compressed together with tﬁ%r?e Euler angles ang is an constant which \c/gn be estimat-
unique parts discovered in the first step. ed from experiments. In our experllmleniis,: 2

From Eq. 2 and Eqg. 3, the optimization goal here can be

The compressed bitstream consists of QP, the boundingyritten as

box of the 3D model, the bounding-box of all translation
vectors, the encoded unique parts, encoded patterns alongA8maz IPllmaz+ | APl maz+ | AT [ max = MazErr, (4)
with pattern IDS and encoded instance transformation ma—h A dlIAT h bounds of th
trixes along with instance IDs. Another advantage of the bit" ere|| p”,m‘“” and|[AT||max are the Upper bounads o t €
allocation scheme used by BBMC is thatQ Pp, QP and reconstruction error of pattern coordinates and trarmsiati
QP,, can be automatically decided by the decoder. Excep\fecmrs_’ _anql|p||,,m is the s_cale of the patter_n.
the bounding-box of translation vectors, there is almost no Intuitively, let the three items at the left side of Eq. 4 to be

bit-rate loss for recording different quantization partens equal, i.e.

The decoder decodes all the data and reconstructs instance MazErr
components using the reconstructed patterns and trarsform €020maz [|Pllmaz = [|AP|lmaz = [[AT [lmaez = —
tion matrixes. (5)
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By using Eq. 5, the various quantization parameters can 3. EXPERIMENTAL RESULTS
be decided from QP as follows.

QPp is calculated by Various experiments are performed to compareRBeper-
formance ofPB3DMC and SC3DMC. During all the exper-
QPp = |3copQP] (6) iments, the configuration BBC3DMC which generates the

best performance is useBB3DMC also use$SC3DMC with
wherecqpe(0.0,1.0) is a constant used to control the influ- the same configuration to compress patterns and unique com-
ence of the over-conservative estimation of the recontmic ponents. Multi-componer8D models with a wide range of
to the final rate-distortionRD) performance. In our experi- complexity and topology types have been used in our experi-
mentscop = 0.4. ments.RMS calculated by Metro [19] is used as the measure
The patterns will be translated to the origin before com-of the reconstruction error. The distortion is reportediite
pression. All patterns will be compressed together. Then  respect to the diagonal of the bounding box of the orighial

model.
HApHmaw = 2_QPP_1SPmn,m (7)
Optimized bit allocation sch
and
”AT”WH = 2_QPT_lsT (8)
where Sp, .. is the scale of the pattern with the biggest .
bounding-box, and is the the bounding-box of all transla- 5" .- -  doptneap
tion vectors. Using Eq. %) Pr can be calculated by é N N Al QP Combinations
a oo . .
Sr siiy
QPr = [QPp +logy 5. (9) - S
tiid
For calculatingl P4, an important fact which can also be o e ml w a © e
observed from Eq. 5 is that the distortion caused by quantfizi Bitrate(BPV)
Euler angles varies with the scale of the correspondent pat-
tern. Thus, to achieve the same reconstruction errorjvelat Fig. 2. Experiment to test the bit allocation scheme.

small instance components need less accurate quantizdtion
the rotation transformation than the big ones. To avoid anne  The first experiment is to investigate the optimal bit al-

essary bit-rate loss, rather than calculating a siigley for  |ocation scheme using model1607 from Princeton Shape
all instances@Q Py, is calculated for each instance using thegenchmark [20]. Within the range 66, 22], PB3DMC using
correspondent pattern scale as follows. assigned values a) Pp, QPr and QP is compared with
As PB3DMC using adaptive values 6j Pp, Q Pr and@Q P4 cal-
Abypyay = 2m2~ P41 (10)  culated fromQP. As demonstrated in Fig. 2, the bit alloca-
tion scheme leads to a close-to-optimal performance among
all the possible combinations §fPp, Q Pr andQPa.
The RD gain of PB3DMC over SC3DMC is demonstrat-
2mcySp, e ! >
Sp 1, (11)  ed in Fig. 3, using severaD models from Princeton Shape
mar Benchmark. Itis clear th&B3DMC gains significant bit-rate
whereSp, is the scale of the pattern corresponding toithe ~ saving when compressirg models with repetitive compo-

using Eq. 5 and Eqg. Q) P4, is calculated by

QPa, = [QPp +log,

instance. nents. And theRD gain is more significant at low bit-rates
Furthermore, to make sure that the same values can thgcause more repeated structures are discovered . As shown
calculated by the decodep,Pr andQ P, are given by by md14’s wireframe in Fig. 3(f), lots of multi-componeBD

models, especially those CAD models, consist of lots ofitria

St gles in dramatically changing sizes and sharp featureghwhi
QPr = [QPp + log, S 1. (12) pose big challenges to traditionzD model codecs. More-
! over, the random position and orientation of the components
27coSp, of m973 and m056 can hardly be exploited by traditional
QPa; = [QPp +log, Tl]’ (13) 3D model codecs. However, by using the new representation,

mawx g

these negative impacts on compression can be efficiently re-
whereSp,,,. andSp,  are the scale of the reconstructed pat-duced.

terns. Then the decoder can automatically decided the quan- Another advantage ¢1B3DMC is the decoding efficiency
tization parameters after recovering all patterns. improvement. This is because that the decoding of transfor-
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Fig. 3. The RD performance curves ®fmodels from the Princeton Shape Benchmark. In the sense distortion is less than
0.001 , m453, m414, m599, m973 and m1056 haveé0%, 95%, 82%, 73% and75% vertices belonging to repetitive structures.

mation is usually more efficient than the decoding of vestice

and triangles, which often requires complex computations.
Experiments o130 models from the Princeton Shape Bench-

mark is shown in Fig. 4, proving th&B3DMC achieves up
to 60% decoding acceleration.
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Fig. 4. Decoding efficiency comparison.

Finally, a benchmark is built foPB3DMC using 444
multi-componen3D models from MyMultiMediaWorld.com.
The RD gain of PB3DMC over SC3DMC is as shown in
Fig. 5. Except? models whichPB3DMC performs a bit
worse thanSC3DMC (< —10%), PB3DMC achieves sig-
nificant gain, morn thar50% gain on more thar80% 3D
models. Besides the efficient designRB3DMC, this sig-
nificant performance gain is also based on the fact that the
3D models are built for the common objects in the real world,

The RD gain of PB3DMC over SC3DMC

1512 l|||
--" .

RD Gain

#Models

Fig. 5. The benchmark building result 8B3DMC.The num-
bers above the columns show the number of models achieving
the corresponding RD gain.

4. CONCLUSIONS

In this paper, &attern-Based 3D Mesh Codec is presented to
compress multi-component 3D models. The repetition among
the components is exploited to reduce the redundancy, which
benefit the performance of the proposed method. And an opti-
mal bit allocation scheme is proposed to encode the compact
representation derived from repetition detection. Coragar
with the previous standardized algorithms, a significaim ga
can be obtained using the propofRBBDMC, which will be

%%bllshed as an amendment of MPEGtandard.

such as plants and architectures, and contain a large number

of components. Similar results are reported in [21].
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