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ABSTRACT
We propose a new algorithm for source localization on rigid sur-
faces, which allows one to convert daily objects into human-
computer touch interfaces using surface-mounted vibration sen-
sors. This is achieved via estimating the time-difference-of-arrivals
(TDOA) of the signals across the sensors. In this work, we employ a
smooth parametrized function to model the gradual noise-to-signal
energy transition at each sensor. Specifically, the noise-to-signal
transition is modeled by a four-parameter logistic function. The
TDOA is then estimated as the difference in time shifts of the func-
tions fitted to the sensor data. Experiment results show that the
proposed algorithm significantly outperforms existing techniques
which adopt the abrupt change model for time-of-arrival estimation.

Index Terms— Human-computer interface, source localization
on solids, TDOA, four-parameter logistic function

1. INTRODUCTION

Source localization utilizing acoustic wave propagation on rigid sur-
faces has recently emerged as a cost-effective solution for human-
computer touch interfaces (HCIs) [1–5]. In such applications, low-
cost surface-mounted sensors are employed to capture vibration sig-
nals induced by impacts exerted on the surface. The signals are sub-
sequently processed for estimating the location of the impact.

Many recent approaches achieve source localization by esti-
mating the time-difference-of-arrival (TDOA) [6, 7]. Estimation
of TDOA on rigid surfaces, however, is highly challenging as the
performance of conventional techniques such as the generalized
cross-correlation (GCC) [8] severely degrades due to the presence
of dispersion and multipath. Dispersion refers to the dependence
of wave velocity on frequency, which causes vibrations of different
frequencies to arrive at a sensor at different times [9,10]. This results
in the time-of-arrival (TOA) as well as TDOA being frequency de-
pendent. Multipath is the phenomenon where a vibration is reflected
at the medium boundaries, causing distortion to the sensor-received
signal [11]. While dispersion can be addressed by isolating signal
components corresponding to a specific frequency [12–14], wave-
form distortion due to multipath causes the GCC function to have
multiple false peaks, resulting in poor TDOA estimation.

Methods proposed in [15, 16] address the multipath problem by
focusing on the early part of the received signal where no reflection is
present to estimate its TOA. In [15], the vibration signal is assumed
to be locally stationary and the Kullback-Leibler information diver-
gence (KLID) is employed to detect the TOA which corresponds to
the maximum change in frequency distribution of the received sig-
nal. The TiF-HA method [16] converts the short-time Fourier trans-
form (STFT) coefficients of the signal into Hermitian angles (HA)

and it was noted that the standard deviation of HA across frequency
bins decreases abruptly at the time instant corresponding to the TOA
of the signal.

While both the KLID-based and TiF-HA methods achieve good
performance for small-sized surfaces, they fail to perform as well
on larger surfaces. This is due to the assumption that the noise-to-
signal transition of the received signal occurs abruptly and that the
TOA corresponds to the transition point. For long propagation dis-
tances such as that in large surfaces, such noise-to-signal transition,
however, occurs gradually over a relatively longer duration. Since
the number of spikes introduced by noise increases with the duration
of the transition period, estimation of TOA from such spurious tran-
sition is therefore prone to error, resulting in poor TDOA estimates.

As opposed to existing algorithms, we propose to employ a
smooth parametrized function to model the gradual transition of
the signal at each sensor. The TDOA between a sensor pair is then
estimated as the difference between the lateral shift across two re-
spective fitted functions. While the estimated TOAs from existing
techniques are severely affected by spurious spikes, the proposed
fitting procedure involves received signal over the noise-to-signal
transition period hence mitigating such detrimental effects. As a
result, the proposed method can achieve higher accuracy in TDOA
estimation resulting in better localization of the impact source for
HCI applications.

2. THE PROPOSED STFT-LOGISTIC ALGORITHM

2.1. Time-frequency analysis and the logistic function

To illustrate how a parameterized function is used to model the
noise-to-signal transition, we first analyze vibration signals captured
using surface-mounted shock sensors on a glass plate of dimension
1.2 m × 1.0 m × 5 mm. A typical time-domain signal x(n) of
length N received by one of the sensors due to a finger tap on the
glass plate is shown in Fig. 1(a). The arrival of the vibration at the
sensor is associated with an increase in energy of the received signal.
This change in energy can clearly be observed in the time-frequency
domain via computation of the STFT of the signal given by

x(m) = FKx(m)

= [x(0,m), . . . , x(K − 1,m)]T , (1)

where x(m) = [x(m), . . . , x(m + M − 1)]T is a length-M sig-
nal frame, m = 0, 1, . . . , N −M + 1 is the frame index, and (.)T

denotes the transposition operator. The variable K is the number of
frequency bins, and FK is the K × K discrete Fourier transform
(DFT) matrix. The spectrogram of x(n), estimated using the mag-
nitude of the computed STFT coefficients, is shown in Fig. 1(b) in
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Fig. 1: Signal received by a sensor placed at position (1.1 m, 0.9 m)
due to an impact at location (0.3 m, 0.3 m) on a glass surface of
dimension 1.2 m× 1.0 m× 5 mm (a) in the time domain and (b) in
the time-frequency domain.

logarithmic scale. We note from the figure that an increase in signal
energy occurs as the signal arrives at the sensor. Our objective in
this work is to estimate the TDOAs by analyzing such energy transi-
tion at each sensor. It is, however, worth noting that, due to velocity
dispersion, energy transition varies with frequency. We therefore
process the signal within a sufficiently narrow frequency band so
that any dispersive effect within the band is negligible. The energy
transitions across frequencies belonging to the same band can then
be considered to occur at the same time.

Suppose a sufficiently narrow frequency band that has been se-
lected covers frequency bins from kb to ke where 1 ≤ kb < ke ≤
K. The mean spectral value across the selected frequency band at
each time-frame index m is then given by

χ(m) =
1

ke − kb + 1

∑ke

k=kb
‖x(k,m)‖ . (2)

It can be seen from Fig. 2 that χ(m) increases from low values (cor-
responding to noise) to high values (corresponding to signal). Denot-
ing the time interval corresponding to the noise-to-signal transition
edge of χ(m) as the transition period, it can be seen that the varia-
tion in energy is modest before and after the transition period. The
general waveform of χ(m) shown in Fig. 2 can then be modeled by
a four-parameter logistic growth function [17, 18]

f(m) = A+ (B −A)
[
1 + e−γ(m−κ)

]−1

, (3)

where A, B, γ, κ are the parameters that determine the shape of
f(m). The parameters

A = lim
m→−∞

f(m) and B = lim
m→+∞

f(m), (4)

are, respectively, the minimum and maximum values of f(m).
When f(m) is fitted to the sequence χ(m), as shown in Fig. 2, these
parameters correspond, respectively, to the noise and signal energy
levels. The parameter κ is the translation parameter that determines
the location of f(m) along the time axis such that when m = κ,

f(κ) = (A+B)/2, (5)
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Fig. 2: Fitting of the logistic function f(m) to χ(m).

which corresponds to the midpoint of the transition edge of f(m).
The point m = κ therefore always lies within the transition period.
The slope of f(m) at m = κ is given by the derivative

f ′(κ) = (B −A)
(
γe−γ(m−κ)

)(
1 + e−γ(m−κ)

)−2
∣∣∣∣
m=κ

= (B −A)γ/4, (6)

which implies
γ = 4f ′(κ)/(B −A). (7)

The parameter γ is therefore proportional to the slope of f(m) at
m = κ and reflects how steep the change in χ(m) occurs when
f(m) is correctly fitted. It is worth noting that abrupt transition is a
special case of gradual transition where γ →∞.

Before formulating the estimation of A, B, γ and κ in the next
section, we first describe how f(m) is deployed for TDOA estima-
tion and why it is expected to outperform existing algorithms. Sup-
pose that fi(m), with translation parameter κi, is the function fitted
to χi(m) of the ith sensor. The TDOA between a sensor pair (i, j)
is then obtained as the difference between κi and κj . It is worth not-
ing that, as opposed to conventional methods such as TiF-HA and
KLID-based where the TDOAs are estimated via explicit estima-
tion of TOAs, our approach utilizes the time translation of the fitting
functions to estimate the TDOAs.

To understand why our proposed algorithm can achieve better
localization performance, we note that existing algorithms estimate
TOAs via the use of thresholding on statistics derived from the sen-
sor output. When the transition edge is not abrupt such as the case
for relatively long propagation distances in large surfaces, localiza-
tion performance is highly dependent on the choice of threshold. In
addition, the signal becomes more spurious due to noise over the
long transition period, making the thresholding process more erro-
neous. Therefore, as the slope of the noise-to-signal transition edge
decreases, the error in TOA estimation increases, resulting in poor
TDOA estimates. On the contrary, fitting a function to the sen-
sor data which focuses on the transition period mitigates such er-
ror. With good fitting, the time-translation error of the fitted func-
tion is averaged across all the points along the transition edge. The
translation-parameter estimates are therefore robust to the slope of
the transition edges. As a result, TDOAs computed via transla-
tion parameters are less error-prone compared to those obtained via
threshold-based TOA estimates employed in existing techniques.

2.2. Four-parameter logistic model fitting

We estimate A, B, γ, and κ from χ(m) by first noting that the tran-
sition period, which encapsulates the arrival of the signal, should be
the focus when fitting f(m) to χ(m). Therefore, as opposed to [19],
where a function is fitted across the entire data range, we introduce a
weighting sequence w(m) so as to gives higher priority to data over
the transition period. The proposed algorithm involves the derivation
of a cost function which is independent of A and B, followed by a
non-linear optimization process for the estimation of γ and κ.
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2.2.1. Derivation of the cost function

Let ε(m) be the residual/error, modeled as a normal random vari-
able, while fitting f(m) to χ(m). With reference to (3), we obtain

ε(m) = χ(m)− [A+ (B −A)h(m)] , (8)

where h(m) = [1 + e−γ(m−κ)]−1. With w(m) properly chosen to
give higher priority to data over the transition period, the weighted
sum of squared fitting errors is given by

J (A,B, γ, κ) =
∑M

m=1
w(m)ε2(m)

= χ̃Tχ+ (B −A)2h̃Th+A2Sw − 2AwTχ

− 2(B −A)h̃Tχ+ 2A(B −A)wTh, (9)

where χ = [χ(1), . . . , χ(M)]T , w = [w(1), . . . , w(M)]T , Sw =∑M
m=1 w(m), χ̃ = [χ̃(1), . . . , χ̃(M)]T , h̃ = [h̃(1), . . . , h̃(M)]T ,

χ̃(m) = w(m)χ(m) and h̃(m) = w(m)h(m). Differentiating (9)
with respect to A and B, we obtain

∂J /∂A = 2[ASw+(A−B)h̃Th+h̃Tχ−wTχ+(B−2A)wTh]
(10)

and
∂J /∂B = 2[(B −A)h̃Th− h̃Tχ+AwTh]. (11)

Since the weighted sum J is minimum when ∂J /∂A = 0 and
∂J /∂B = 0, the values of A and B can be obtained from (10) and
(11), respectively, as

A =
(wTχ)(h̃Th)− (wTh)(h̃Tχ)

Swh̃Th− (wTh)2
(12)

and

B =
(h̃Tχ)(Sw −wTh)− (wTχ)(wTh− h̃Th)

Swh̃Th− (wTh)2
. (13)

Substituting (12) and (13) into (9), the cost function is now simpli-
fied to be independent of A and B, as given by

J (γ, κ) = χ̃Tχ− (wTχ)2(hTh) + Sw(h̃
Tχ)2

Swh̃Th− (wTh)2

− 2(wTh)(wTχ)(h̃Tχ)

Swh̃Th− (wTh)2
. (14)

With J (γ, κ) now only dependent on γ and κ, optimization meth-
ods such as that described in [20, 21] can be utilized to estimate the
pair (γ, κ) that minimize the cost function in (14). To facilitate such
nonlinear optimization procedure, it is important to obtain a suffi-
ciently good initial estimate of (γ, κ). Therefore, in the next section,
we describe the process of estimating when the transition period oc-
curs, which serves to provide an initial estimate of (γ, κ). It is worth
noting that with the transition period estimated as [τ̂b, τ̂e], we can
employ a weighting sequence given by

w(m) =

{
1, τ̂b ≤ m ≤ τ̂e,
0, otherwise, (15)

to give higher priority to the signal data over the transition period
when minimizing J (γ, κ) for the purpose of fitting.

2.2.2. Estimating the occurrence of the transition period

Denoting the transition period by [τb, τe], we now describe how
to obtain its estimate [τ̂b, τ̂e]. Consider a frame-index m that di-
vides χ = [χ(1), . . . , χ(M)]T into left and right partitions χ`m =
[χ(1), . . . , χ(m − 1)]T and χrm = [χ(m + 1), . . . , χ(M)]T . The

f(m) ≈ αm+ β

Â0

B̂0
(a)

χ
(m

)
(d
B
)

τ̂b τ̂eρ

(b)

Time-frame index m

σ
2 χ
(m

)

Fig. 3: Estimating the occurrence of transition period. The points
corresponding to the end-points of the transition period are denoted
by •, and the point corresponding to the minimum of the total vari-
ance σ2

χ(m) is denoted by ◦.

relative position of the partition point m with respect to τb and τe
affects the total variance of χ`m and χrm. If m < τb, χ`m con-
tains only noise energy, and therefore exhibits low variance. How-
ever, χrm has high variance due to the inclusion of transition pe-
riod in χ(m + 1), . . . , χ(τe). Similarly, if m > τe, χ`m exhibits
high variance while χrm shows low variance. On the contrary, when
m ∈ [τb, τe], the number of outliers is reduced for both χ`m and
χrm, resulting in smaller variances for both the sequences. The total
variance of the two partitions, given by

σ2
χ(m) = var{χ`m}+ var{χrm}, (16)

can therefore reflect the position of the partitioning point with re-
spect to the transition period, with small σ2

χ(m) corresponding to
m ∈ [τb, τe]. As illustrated in Fig. 3, the point

ρ = argmin
m

σ2
χ(m) (17)

is therefore guaranteed to lie within the transition period.
Note that since χ(m) values are highly concentrated around A

(defined in (4)) for m ≤ τe, median{χ`τe} is a sufficiently good
estimate of A, where χ`τe = [χ(1), . . . , χ(τe− 1)]T . Exploiting the
fact that the transition period is comparatively short with respect to
the data length, we have median{χ`ρ} ≈ median{χ`τe}. An initial
estimate of A can therefore be obtained as Â0 = median{χ`ρ}.
Similarly, B̂0 = median{χrρ}. The start of the transition period is
then defined as the last time instant that σ2

χ(m) decreases below the
threshold Â0, i.e.,

τ̂b = max{m | 1 ≤ m < ρ;σ2
χ(m− 1) < Â0 ≤ σ2

χ(m)}. (18)

Similarly, the end of the transition period is estimated as the first
time instant that σ2

χ(m) exceeds B̂0, i.e.,

τ̂e = min{m | ρ < m ≤M ;σ2
χ(m) ≤ B̂0 < σ2

χ(m+ 1)}. (19)

Fig. 3 illustrates the estimated τ̂b and τ̂e using the above process.

2.2.3. Estimation of γ and κ

With the identification of the transition period, we can now adopt
an approximation scheme in which the transition edge, i.e., the por-
tion of f(m) over the period [τ̂b, τ̂e], is approximated by a line that
passes through the two points (τ̂b, Â0) and (τ̂e, B̂

0). In other words,
as can be seen from Fig. 3,

f(m) ≈ αm+ β, ∀m ∈ [τ̂b, τ̂e], (20)
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where the coefficients α and β are given by

α =
B̂0 − Â0

τ̂e − τ̂b
, and β = Â0 − (B̂0 − Â0)

τ̂b
τ̂e − τ̂b

. (21)

Recall that κ ∈ [τb, τe], from (5) and (20), an initial guess for κ
is the value κ̂0 ∈ [τ̂b, τ̂e] that satisfies ακ̂0 + β = (Â0 + B̂0)/2,
giving an initial value

κ̂0 = (τ̂b + τ̂e)/2. (22)

Note that (20) also implies f ′(m) ≈ α,∀m ∈ [τ̂b, τ̂e], which, to-
gether with (7) and (21), provides an initial estimate for γ given by

γ̂0 = 4α/(B̂0 − Â0) = 4/(τ̂e − τ̂b). (23)

With the initial values (γ̂0, κ̂0), the solution (γ̂, κ̂) that minimizes
the cost function in (14) can be obtained via iterative optimization
algorithms such as the Nelder-Mead algorithm [20, 21].

2.3. Localization of point of impact

Consider a plate surface mounted with R sensors where the location
of the ith sensor is (ui, vi) and an impact exerted at location (us, vs).
By applying the procedure explained in the above sections for each
sensor, we obtain the time-translation parameter κ̂i for the ith sensor.
The TDOA between the ith and jth sensors is then given as

τ̂ij = (κ̂i − κ̂j)/fs, (24)

where the division by the sampling frequency fs serves the purpose
of converting from sample to second.

Recall that within a sufficiently narrow selected frequency band,
the signal components propagate with the same velocity, which we
denote by cB. Estimation of cB can be achieved during calibration as
described in [16] and the source location (us, vs) can be estimated
by minimizing the error function

(ûs, v̂s) = argmin
(u,v)

∑
i,j

(
[di(u, v)− dj(u, v)] /cB − τ̂ij

)2
,

(25)
where di(u, v) =

√
(u− ui)2 + (v − vi)2 is the distance from an

arbitrary location (u, v) to the ith sensor positioned at (ui, vi). Such
minimization can be performed, similar to that described for other
HCI applications [16], using, for example, the iterative Levenberg-
Marquardt optimization algorithm [22].

3. EXPERIMENT RESULTS

We evaluate the performance of the proposed STFT-Logistic al-
gorithm using different sets of real data collected on two glass
plates of different dimensions. The small plate is of dimension
0.6 m × 0.6 m × 5.0 mm while the large plate is of dimension
1.2 m × 1.0 m × 5.0 mm. On the surface of each of these plates,
impacts are generated by either a finger or a metal stylus, making a
total of four experiment setups. We employ eight surface-mounted
Murata PKS1-4A10 piezoelectric shock sensors to capture impact-
induced vibrations where the sensor outputs are digitized using
fs = 96 kHz. The sensors are mounted at the corners and the
midpoints of the edges, 0.1 m away from the plate boundaries.
For the small plate, impacts are generated at locations (0.2, 0.2),
(0.2, 0.3), (0.2, 0.4), (0.3, 0.2), (0.3, 0.3), (0.3, 0.4), (0.4, 0.2),
(0.4, 0.3), and (0.4, 0.4). For the large plate, the impact loca-
tions are (0.3, 0.3), (0.3, 0.5), (0.3, 0.7), (0.5, 0.3), (0.6, 0.5),
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Fig. 4: Performance comparison of the proposed algorithm with that
of TiF-HA [16] using (a) RMSE and (b) standard deviation of the
localization errors (STDE).

(0.6, 0.7), (0.9, 0.3), (0.9, 0.5), and (0.9, 0.7) (all the dimensions
are in meters). At each location, a set of five impacts are generated,
and hence a total of forty-five test cases are performed for each
experiment setup. In order to quantify the overall performance of
each algorithm on a set of data, the root-mean-square error (RMSE)
and the standard deviation (STDE) of the localization errors for all
impacts in the set are employed.

Since the TiF-HA outperforms the KLID-based method, we only
compare the performance of our proposed algorithm with that of
TiF-HA [16]. It can be seen from Fig. 4 that the proposed STFT-
Logistic outperforms the TiF-HA significantly albeit a modest im-
provement in performance for the finger tap on the large plate. These
results illustrate the advantage of the adoption of gradual-change
model over abrupt-change model. The modest improvement in lo-
calization performance of the proposed STFT-Logistic for finger taps
on large surface may be explained as follows. Unlike a metal stylus
which is rigid, a finger is soft and generates multiple vibrations due
to flesh, nail and bone. These vibrations are of different types and
propagate with different velocities. Over the small surface, due to
the short propagation distance, the difference in arrival times at the
sensor of these vibrations are negligibly small. On the contrary, for a
large surface, their separation in arrival times affects the energy tran-
sition of the sensor output. This energy transition now corresponds
to multiple vibrations while the transition modeling was intended
for the arrival of a single vibration. Such model mismatch causes
the performance of STFT-Logistic to degrade in this case and only
to outperform that of TiF-HA modestly.

4. CONCLUSION

Our proposed TDOA-based algorithm for HCI applications employs
the four-parameter logistic function to model the gradual energy
transition of the sensor-received signals. The TDOA information is
then estimated as the time-translational difference between the func-
tions fitted to the sensor data. The proposed STFT-Logistic avoids
the direct estimation of TOA, which is prone to error when the transi-
tion is gradual, and therefore outperforms existing techniques which
adopt the abrupt change model for TOA estimation.
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