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ABSTRACT 

 
Light-field cameras attract great attention because of its refocusing 

and perspective-shifting functions after capturing. The special 

4D-structured data contains depth information. In this paper, a 

novel depth estimation algorithm is proposed for light-field 

cameras by fully exploiting the characteristics of 4D light-field 

data. A novel tensor, intensity range of pixels within a microlens, 

is proposed, which presents strong correlation with the transition 

on focus, especially for texture-complex regions. Meanwhile, the 

other tensor, defocus blur amount is utilized to estimate the focus 

level, which generates more accurate depth estimation especially 

for homogeneous regions. Then, the depths calculated from the two 

tensors are fused according to the variation scale of intensity range 

and the minimal defocus blur amount under spatial smoothness 

constraints. Compared with the representative approaches, the 

depth generated by the proposed approach presents richer details 

for texture regions and higher consistency for unified regions. 
 

Index Terms— depth estimation, Light-field, intensity range, 

depth fusion, confidence measure 
 

1. INTRODUCTION 

 
The newly released commercial light-field cameras, Lytro [1] and 

RayTrix [2], have attracted great attentions. Based on the theory of 

light-field, this kind of cameras are capable of refocusing and 

perspective-shifting simultaneously from a single shot with only 

one camera [3]. Furthermore, depth estimation with light-field 

cameras has been regarded as a much cheaper and easier way for 

ordinary users.  

The existing methods of depth estimation for light-field 

cameras can be mainly classified into two categories: stereo 

matching approaches [4-7] and light-field approaches [9, 12-13]. 

Stereo matching approaches calculate depth from the 

correspondence relationship among sub-aperture images acquired 

by light-field cameras [4]-[7]. However, the computational 

complexity of such algorithms is extremely high and the quality of 

the depth is subject to the resolution of the input sub-aperture 

images, which is much lower, compared to the images captured by 

multi-view systems. Thus, it greatly affects the efficiency of stereo 

matching [8]. Some approaches updated stereo matching 

algorithms, e.g. considering the line structure of rays [9]. But they 

still only use the correspondence relationship in the light-field data. 

Although Light-field approaches utilize correspondence together 

with defocus information contained in the light-field [10, 11], the 

estimated depth still lack details in homogeneous regions, e.g. 

different cost functions are proposed by Min-Jung Kim et al. [12] 

for different cues to estimate the depth and the algorithm proposed 

by Tao et al. [13] further combines the confidence measures of the 

two cues to improve the accuracy of the estimated depth. 

Nevertheless, both of them fail when the captured scene is 

texture-less. 

In this paper, a novel depth estimation algorithm is proposed 

for light-field cameras. By analyzing rendered light-field images 

with focus variation in the constructed volume, a novel tensor, 

intensity range of pixels within a microlens, is proposed, which 

indicates the focusing distance accurately, especially for the 

regions with complex texture. Moreover, the other tensor, defocus 

blur amount measured by blur estimation, aids to calculate the 

accurate focus distance for different objects in the scene, especially 

for the homogeneous regions. Then, based on the variation scale of 

intensity range and the minimal defocus blur amount from blur 

estimation, depths estimated by the two tensors are fused via global 

optimization with constraints of spatial smoothness. The proposed 

method generates the depth with richer transition details and higher 

consistency, compared with state-of-the-art works. 

The rest of the paper is organized as follows. The framework 

of the proposed algorithm is illustrated in section 2. Section 3 

describes depths estimation from the two tensors: intensity range 

and blur estimation, respectively. Section 4 illustrates the depth 

fusion and optimization. Experimental results are shown in section 

5. And the conclusions are drawn in section 6. 
 

2.  THE PROPOSED FRAMEWORK 

 
The framework of the proposed algorithm is in Fig. 1. First, 

Refocusing is performed to construct a volume from a single shot 

captured by a light-field camera. Point spread function (PSF) 

proposed by Ng et al. [14] is exploited during Refocusing as: 
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where L0 is the rectification of the captured image[15]; Lz is the 

refocused image at depth level z; x, y are spatial coordinates and u, 

v are angular coordinates on the image plane. Thus, a number of 

refocused images are generated and organized according to the 

focusing plane varying from close to far to form a volume, which 

will be used for Tensor Extraction. Meanwhile, the central pixel of 

each microlens is picked out from L0 to accomplish Central 

Sub-aperture Image Acquisition for calculating the smoothness 

constraints in the following processing. 

Then, Tensor Extraction is applied to the volume of refocused 

images generated above to extract two variants which present high 

correlation with the variation in focusing plane. The first variant, 

intensity range is proposed and verified based on a comprehensive 

analysis on the light-field data. Exploiting the minimum value of  
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Fig. 1. Framework of the proposed method. 

 

intensity range during refocusing, a depth image, Dir, is calculated 

by Depth Estimation. The second variant, defocus blur amount, is 

used to measure the focus level of each pixel during the focus 

variation. A representative and efficient blur estimation algorithm 

proposed in [18] is adopted in this paper to the measure the 

defocus blur amount of images generated by Refocusing and 

integrated in the angle domain. Utilizing the minimum defocus 

blur amount, another depth image, Dbe, is also calculated by Depth 

Estimation. The definition of the tensors and the related analyses 

will be described in detail in Section 3. 

Finally, the two estimated depth, Dir and Dbe, are fused 

according to their accuracy under the neighborhood smoothness 

constraints via Depth Fusion & Optimization. The accuracy of Dir 

and Dbe is measured based on the variation scale of intensity range 

and the minimum defocus blur amount from blur estimation, 

respectively. The neighborhood smoothness constraints are set 

considering the gradient of the central sub-aperture image. The 

optimization is implemented according to [16]. By fusing the two 

depth maps, the final estimated depth presents high consistency 

and accuracy, e.g. decreasing the variance within the region of the 

same depth and sharpening the boundaries. 
 

3.  TENSOR EXTRACTION AND DEPTH 

ESTIMATION 

 

3.1. Depth from Intensity Range 

 
In order to estimate the depth with rich details and high accuracy 

simultaneously for light-field cameras, an efficient tensor strongly 

correlated with the variation in focusing distance is investigated.  

According to the imaging theory of light-field cameras, as the 

focusing point moves away from a specific position in the real 3D 

space, the pixels corresponded to the focusing point scatter from 

one microlens to several microlenses around [14]. Inversely saying, 

if the spatial point is focused well, the intensity range of the 

corresponding pixels should be lower than that when the point is 

out-of-focus.  

Therefore, intensity range Rz(x, y) is proposed and extracted 

from the constructed volume, composed of a number of refocused 

images, at every hypothetical depth level z as: 

     
,,
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u vu v

zR x y I x y u v I x y u v u v M     (2) 

where I(x, y, u, v) is the pixel intensity at (u, v) within the 

microlens (x, y) in Lz and M is the set of pixels within the 

microlens. Then, the depth from intensity range at pixel (x, y), Dir(x, 

y), is estimated by: 

   , argmin , ,ir z
z

D x y R x y              (3) 

 

3.2. Depth from Defocus Blur Amount 

 
The depth from intensity range, Dir, reveals more accurate 

estimation in texture-complex regions. To further improve the dep- 
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Fig. 2. (a) Central sub-aperture image; Depth from: (b) Intensity 

range; (c) Blur estimation; (d) Depth fusion and optimization. 

 

-th accuracy in texture-less regions, a tensor called defocus blur 

amount is proposed. 

The tensor, defocus blur amount, is measured by blur 

estimation [18] on the refocusing images integrated in the angle 

domain.  ,zL x y is given by:  

   
 
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, z z

u,v
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N

           (4) 

where N is the number of pixels within the same microlens. The 

ratio between the gradients of  ,zL x y and its re-blurred image, 

which is formed by using a Gaussian kernel at edge locations and 

then propagated according to [18], is calculated. Thus, defocus blur 

amount maps, Bz, corresponded with  ,zL x y at each depth level z 

are generated. Then, the depth estimated from defocus blur amount 

at pixel (x, y), Dbe(x, y), is given by: 

   , argmin , ,be z
z

D x y B x y            (5) 

which extracts the depth level z corresponding to Bz(x, y) with the 

minimum defocus blur amount as the depth of pixel (x, y). 

Dir and Dbe estimated for the sample scene shown in Fig. 2 (a) 

are shown in Fig. 2 (b) and (c), respectively. It is obvious that Dir 

benefits regions with complex texture, while Dbe provides higher 

consistency and accuracy for unified regions. Therefore, to exploit 

the advantages from both of them, an optimization model is 

proposed by analyzing the response of Rz(x, y) and Bz(x, y) under 

the smoothness constraints of the texture. 
 

4.  DEPTH FUSION AND OPTIMIZATION 

 
In order to fuse Dir and Dbe to strengthen the final estimated depth 

Dfinal by preserving clear boundaries and the consistency in 

homogeneous regions, an optimization model is proposed based on 

the pixel-wise measurement of the accuracy of Dir and Dbe, and the 

neighborhood smoothness constraints. The model is given by: 
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where Cir and Cbe are the confidence map which measures the 

accuracy of Dir and Dbe, respectively;λ controls the weight 

between Dir and Dbe;λ flat andλ smooth control the Laplacian 

constraint and the second derivative kernel respectively to enforce 

the flatness and overall smoothness of the final estimated depth. 

Gradient G extracted from the central sub-aperture image is 

applied as constraints to improve the depth consistency in the hom- 
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Fig. 3. Experimental comparison of indoor and outdoor scenes. 

 

-ogeneous regions while preserving boundaries simultaneously. 

The definition of Cir and Cbe are given as follows. 

 

4.1. Confidence Map of Intensity Range 

 

In order to measure the accuracy for the depth estimated by 

intensity range, the response of the defined tensor, intensity range, 

is analyzed. It is found that if Rz(x, y) presents a large variation 

scale along z, i.e. the difference between the minimum and 

maximum of Rz(x, y) is big, it always leads to a more accurate Dir(x, 

y). Thus, Cir(x, y) is defined as: 

Captured  Scene Yu et al. [9] Tao et al. [13] Proposed (Dir) Proposed (Dir & Dbe) 
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      , NORMALIZE max , min , ,ir z zC x y R x y R x y    (7) 

The measure of Cir(x, y) produces a high value when there is a big 

difference between the minimum and maximum of Rz(x, y). 

Accurate depth is generated by utilizing Cir to strengthen the 

correct estimations and degrade the incorrect estimations of Dir via 

the global optimization. 

 

4.2. Confidence Map of Blur Estimation 

 
In order to measure the accuracy for the depth estimated by 

defocus blur amount, the response of the defined tensor is also 

analyzed. Since lower defocus blur amount corresponds to a better 

focus, we regards that the depth retrieved from lower defocus blur 

amount presents higher confidence. Thus, Cbe(x, y) is defined by: 

    , 1 NORMALIZE min , .be z
z

C x y B x y        (8) 

Cbe produces high values for pixels focused better during 

refocusing, while produces low values for blurry pixels so that to 

enhance the accurate estimation of Dbe and degrade the inaccurate 

ones. 

Applying the fusing and optimization to Dir and Dbe, Dfinal for 

the sample scene in Fig. 2 (a) is shown in Fig. 2 (d). Compared 

with Dir and Dbe, shown in Fig. 2 (b) and (c), Dfinal provides richer 

transition details for depth discontinuity and higher consistency for 

depth uniformity. 

 

5. EXPERIMENTAL RESULTS 

 
The effectiveness of the proposed algorithm is demonstrated by 

comparison with state-of-the-art methods proposed by Yu et al. [9] 

and Tao et al. [13]. Yu et al. [9] is representative in adapting stereo 

matching algorithm to depth estimation using light-field data. Tao 

et al. [13] is a representative light field approach which combines 

defocus and correspondence cues to estimate dense depth with a 

light field camera. All images in the paper are captured by Lytro1.0 

[1]. For Yu et al. [9], the disparity varies among [-2, 2] pixels, with 

the step as 0.2 pixels,σ of Gaussian filter is 1.0 and the direction 

parameter is set to fit the arrangement of the light-field of Lytro1.0 

[1]. Other parameters are set to default values. The light- field data 

of the first three scenes in Fig. 3 are downloaded from [17]. 

Fig. 3 compares the estimated depths of the scenes on the 

leftmost column. The processing results of Yu et al. [9] are shown 

in the second column from the left. It is obvious that it provides the 

major depth levels for each scene, while loses all the details in 

depth transition because of inefficient line-structure detecting. The 

processing results of Tao et al. [13] are shown in the third column 

from the left. Although they can provide more details in depth 

transition relative to that of Yu et al. [9], the granularity of depth 

along the variation in distance is still very coarse. Obvious depth 

errors happen where the tensors based on contrast and angular 

variance both fail. The second column from the right shows the 

depths estimated only by intensity range. Compared with Yu’s and 

Tao’s results, it provides more depth transition details. It is also 

observed that some errors exist in regions lack of texture, 

especially for the last scenes. The depths estimated by fusing Dir 

and Dbe are shown in the rightmost column. The comparison 

between the last two columns gives a self-proof that by fusing the 

depth from blur estimation, the accuracy and consistency of the 

estimated depth get improved, especially for the texture-less 

regions. It can be seen that the proposed fusion method is effective 

in producing much richer depth details, clearer boundaries with 

more consistent depth. 

 

6. CONCLUSIONS 

 
In this paper, an efficient depth estimation method is proposed for 

light-field cameras. Two novel tensors: intensity range of pixels 

within a microlens and defocus blur amount are proposed to track 

the focus variation. Depths calculated from the two tensors are 

fused according to the variation scale of intensity range and the 

minimum defocus blur amount from blur estimation via global 

optimization with the constraints of neighborhood smoothness. The 

effectiveness of the proposed algorithm is demonstrated by the 

comparison with the existing representative approaches. Much 

richer transition details and higher consistency in homogeneous 

regions together with clearer object boundaries are achieved in the 

estimated depth, which will benefit the subsequent applications in 

the future. 
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