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ABSTRACT

Domain adaptation is a challenging task, since it associates
data collected from different domains or exhibiting distinct
distributions. In this paper, we particularly focus on adapting
cross-domain data with distinct feature dimensions or repre-
sentations. Thus, this is referred to as the task of heteroge-
neous domain adaptation (HDA). To solve HDA, we propose
Label and Structure-consistent Unilateral Projection (LS-UP)
that transforms source-domain data to the target domain, with
the goal of matching cross-domain data distribution and pre-
serving data structure after projection. The main contribu-
tion of our work is its ability in relating cross-domain data
with different feature representations. We evaluate our LS-UP
for HDA on two different cross-domain classification prob-
lems, and we show that our method would perform favorably
against state-of-the-art approaches.

Index Terms— Domain adaptation, object recognition,
text categorization

1. INTORDUCTION

In many real-world classification applications, one might not
be able to collect a sufficient amount of labeled data for train-
ing due to the cost of data collection or limited data avail-
ability. Recently, domain adaptation (DA) addresses this task
by transferring the knowledge learned from one or multiple
source domains, with the goal to solve the learning task in the
target domain of interest.

Most existing DA approaches assume that data across do-
mains lie in a homogeneous feature space (i.e., with the same
type of feature) [1, 2, 3]. However, this assumption might not
be held when source and target domain data are collected by
different sensors or processed by different feature extraction
techniques. Thus, in this paper, we focus on the task of het-
erogeneous domain adaptation (HDA), in which we associate
cross-domain data with distinct feature dimensions or repre-
sentations. We note that, for the HDA setting, labeled data can
be collected in the source domain, but only few labeled ones
can be observed in the target domain. Thus, how to associate
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Fig. 1. Illustration of unilateral projection for heterogeneous
domain adaptation (HDA).

such cross-domain data with limited and biased label infor-
mation becomes a very challenging problem [4, 5, 6, 7, 8, 9].

In this paper, we propose Label and Structure-consistent
Unilateral Projection (LS-UP) for HDA. The concept of
unilateral projection is illustrated in Figure 1. As detailed
later in Section 3, our LS-UP transforms the source-domain
data to the target domain, and we associate and recognize
cross-domain heterogeneous data in that domain accordingly.
More specifically, our LS-UP associates cross-domain data
by matching their class-conditional distributions, with an
additional constraint enforcing label and data structure con-
sistency. This is why improved adaptation and classification
performance can be achieved. In Section 4, we will con-
duct experiments on two different cross-domain datasets to
evaluate the performance of our method.

2. RELATED WORK

In this section, we provide a brief review of previous ap-
proaches for solving HDA problems. Generally, existing
HDA approaches can be divided into two categories: com-
mon space learning and domain transformation based meth-
ods. For common space learning [4, 5, 6, 10, 11, 12, 13],
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the goal is to find a pair of feature mappings that project
source and target domain data onto a latent feature space,
so that cross-domain data distributions could be matched
for adaptation purposes. For example, Shi et al. [4] pro-
posed a heterogeneous spectral mapping (HeMap) method
that observed source and target projection matrices via spec-
tral transformation (with no label information considered).
Wang and Mahadevan [5] proposed a manifold alignment
method (DAMA) by maximizing intra-class similarity and
minimizing inter-class similarity. Duan et al. [6] proposed
heterogeneous feature augmentation (HFA) that simultane-
ously derived a common feature space and a classification
model based on maximum-margin techniques. Li et al. [10]
extended HFA to a semi-supervised version (SHFA) that took
unlabeled target domain data into consideration. Wu et al.
[11] proposed a transfer discriminant analysis of canonical
correlations (HTDCC) method to address HDA problems for
cross-view action recognition. Xiao and Guo [12] presented
a semi-supervised kernel matching method for heterogeneous
domain adaptation (SSKMDA). Similarly, Xiao and Guo
[13] considered a semi-supervised subspace co-projection
(SCP) method that projected cross-domain instances onto a
co-located subspace with prediction models jointly learned
by labeled data.

On the other hand, domain transformation [8, 9, 14] meth-
ods directly learn a feature transformation from one domain to
the other. For example, Kulis et al. [8] proposed an asymmet-
ric regularized cross-domain transformation (ACR-t) method
that transferred label information between source and target
domain through a kernelized matrix learning. Hoffman et
al. [9] presented an max-margin domain transform (MMDT)
method that transformed target instances to source domain as
well as learned a classification model. Zhou et al. [14] pro-
posed a sparse heterogeneous feature representation (SHFR)
algorithm that learned a sparse feature transformation matrix
to map the weight vector of classifiers from source to target
domain. Inspired by [8, 9, 14], our work aims at learning a
transformation matrix that project source domain data to the
target domain, with additional capabilities in enforcing label
and structure consistency. In the following section, we will
detail our proposed method.

3. OUR PROPOSED METHOD

3.1. Problem Settings

We first define the notation which will be used in this paper.
Given source and target domain data as DS = {xi

s, y
i
s}

ns
i=1 =

{XS ,ys} and DT = {xi
t, y

i
t}

nt
i=1 = {XT ,yt}, where XS ∈

Rds×ns and XT ∈ Rdt×nt represent ns ds-dimensional
source-domain instances and nt dt-dimensional target-domain
instances, respectively, and entries in ys ∈ Rns×1 and
yt ∈ Rnt×1 indicate their corresponding labels (from 1
up to C). For HDA, only few labeled data are available in the

target domain, while a sufficient number of labeled data can
be observed in the source domain.

For experiment purposes, the target domain data DT

can be further partitioned into labeled and unlabeled sub-
set {DL, DU} where DL = {xi

l, y
i
l}

nl
i=1 = {XL,yl} and

DU = {xi
u, y

i
u}

nu
i=1 = {XU ,yu}. Among them, DU will

not be seen during training. It is worth mentioning that, in
addition to a limited amount of target-domain labels, the fea-
ture representations for source and target-domain data are
also different (i.e., ds 6= dt). In a nutshell, we are given
ds-dimensional source domain data DS and few labeled dt-
dimensional target domain data DL, and the goal of HDA is
to predict the labels for dt-dimensional data XU .

3.2. Label and Structure-consistent Unilateral Projection

To associate and recognize heterogeneous data across do-
mains, we aim to learn a transformation matrix A ∈ Rds×dt

for projecting source-domain data to the target domain, while
both label and consistency can be preserved for performance
guarantees.

Let the new projected source-domain data as A>XS ,
which can be viewed as additional labeled data in the tar-
get domain, and we need the distribution of such data to be
matched to that of the target-domain data. That is, our goal is
to solve the following optimization problem:

min
A

EC(A, DS , DT ) + ES(A, DS), (1)

where we have EC as the maximum mean discrepancy
(MMD) term for associating cross-domain class-conditional
distribution, and ES as the label and structure-preserving
term.

For the class-conditional MMD term, we match the class-
conditional data distributions of the projected source-domain
and target-domain data (only the labeled ones) as suggested
in [15]. That is, the empirical estimates of class-conditional
means are applied to approximate such distributions, and thus
EC is calculated as

EC(A, DS , DT ) =

C∑
c=1

∥∥∥∥∥∥ 1

ncs

nc
s∑

i=1

A>xi,c
s −

1

ncl

nc
l∑

i=1

xi,c
l

∥∥∥∥∥∥
2

+ λ ‖A‖2 ,
(2)

where Xc
S = [x1,c

s ,x2,c
s , · · · ,xnc

s,c
s ] and Xc

L = [x1,c
l ,x2,c

l ,
· · · ,xnc

l ,c
l ] denote source and labeled target domain data of

class c, respectively, and {ncs, ncl } indicate their correspond-
ing numbers of data. Similar to [8, 9], we impose a regular-
izer R(A) = λ ‖A‖2 to prevent overfitting when learning the
transformation A.

For the label and structure-preserving term, we impose
a class-wise locality constraint on the projected source data,

2843



which emphasizes the structure of labeled source-domain data
after projection. Thus, the term ES is defined as

ES(A, DS) =

ns∑
i=1

ns∑
j=1

wij

∥∥A>xi
s −A>xj

s

∥∥2 , (3)

where

wij =

 exp
(
−
∥∥xi

s − xj
s

∥∥2 /σ2
)

if {xi
s,x

j
s} ∈ Xc

S

0 otherwise

denotes structural similarity between xi
s and xj

s (where σ is
calculated by the standard deviation of source-domain data).
It is worth noting that, different from [5], we particularly pre-
serve within-class data similarity instead of the structure of
the entire source-domain data. This would improve the clas-
sification ability after the adaptation is completed.

With (2) and (3), our proposed LS-UP is formulated as
follows:

min
A

C∑
c=1

∥∥∥∥∥∥ 1

ncs

ns∑
i=1

A>xi,c
s −

1

ncl

nc
l∑

i=1

xi,c
l

∥∥∥∥∥∥
2

+ λ ‖A‖2

+

ns∑
i=1

ns∑
j=1

wij

∥∥A>xi
s −A>xj

s

∥∥2 .
(4)

By taking the derivative of (4) with respect to A, the closed
form and optimal solution A can be easily derived as

A =
(
λIds

+ XS (C + S)XS
>
)−1 (

XSHXL
>
)
, (5)

where Ids is a ds-dimensional identity matrix, matrices {C ∈
Rns×ns ,H ∈ Rns×nl} are derived by (2), and S ∈ Rns×ns

is calculated by (3). More precisely, we have

Cij =

{
1

nc
sn

c
s

if {xi
s,x

j
s} ∈ Xc

S

0 otherwise,

S = D−W where (W)ij = wij and D is a diagonal matrix
with (D)ii = Σjwij , and

Hij =

{
1

nc
sn

c
l

if xi
s ∈ Xc

S and xj
l ∈ Xc

L

0 otherwise.
.

Note that, following [8, 9], we fix λ = 1
2 in our experiments.

3.3. Classification

After the optimal A of (4) is obtained, we now have new
feature representation ZS = A>XS as the projected source-
domain data in the target domain, and we denote DF

S =
{A>xi

s, y
i
s}

ns
i=1 = {zis, yis}

ns
i=1 = {ZS ,ys}. Given projected

source domain data DF
S and labeled target domain data DL,

standard classifier like SVM can be directly applied to recog-
nize the remaining unlabeled target domain data {xi

u}
nu
i=1 for

completing the classification task.

Table 1. Classification results (%) with standard deviations
for cross-domain object recognition using the Office dataset.

Source
Domain

SVMt MMDT [9] SHFA [10] LS-UP

Amazon
Webcam

52.3±2.1
59.7±2.8
58.6±3.4

60.0±2.8
59.6±3.4

61.5±2.8
61.1±3.4

Table 2. Classification results (%) with standard deviations
for multilingual text categorization using the Reuters Multi-
lingual dataset (note that m = 10).

Source
Domain

SVMt MMDT [9] SHFA [10] LS-UP

English
French
German
Italian

60.4±3.9

63.8±3.5
63.3±3.9
64.1±3.3
66.2±2.9

66.7±2.7
67.1±2.5
66.8±2.6
67.0±2.4

68.5±2.5
69.1±2.6
67.8±2.6
68.5±2.6

4. EXPERIMENTS

4.1. Dataset Settings

In this section, we evaluate our LS-UP on two HDA bench-
mark datasets: cross-domain object recognition and multilin-
gual text categorization, as we describe below.

Office Dataset [3] is a dataset widely used for both homoge-
neous and heterogeneous domain adaptation (for the task of
cross-domain object recognition). It contains 4, 106 images
with 31 categories in three data domains: Amazon (Im-
ages downloaded from the Internet), DSLR (high-resolution
images captured by digital SLR cameras), and Webcam (low-
resolution images captured by Webcams).

To describe each image in this dataset, SURF interest
points are first extracted from the images, followed by k-
means clustering for converting each image into a Bag-
of-Words (BoW) feature vector. Images in Amazon and
Webcam are represented in 800-dimensional histogram fea-
tures (i.e., 800 visual words in the source domain), and those
in DSLR are represented in 600-dimensional histogram fea-
tures (i.e., 600 visual words in the target domain).

Following [8, 9, 6, 10], Amazon and Webcam are se-
lected as source domains, and DSLR is chosen as the target
domain. For training, we randomly select 20 and 8 images per
category in Amazon and Webcam as source-domain labeled
images, and 3 images per category in DSLR as the labeled
ones in the target domain. For testing, we use the remaining
images in DSLR as the target-domain testing ones.

Multilingual Reuters Collection [16, 17] is a text dataset
with about 11K news articles from 6 categories in 5 lan-
guages (i.e., English, French, German, Italian, and Spanish).
All the articles are represented by bag-of-words model
weighted by TF-IDF. Following the same setting of [6, 10],
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Fig. 2. Classification rates on Reuters Multilingual dataset of all methods with respect to different numbers of labeled target
domain instances per category (m = 5, 10, 15 and 20). Note that Spanish is the target domain, and source domains are (a)
English, (b) French, (c) German, and (d) Italian, respectively.

Spanish is the target domain while the articles of the other
four different languages are regarded as the source domains.

For the training set, we randomly select 100 source do-
mains articles from each categories and m labeled target ar-
ticles from Spanish where m = 5, 10, 15, and 20. For test-
ing, we randomly select 3, 000 articles from Spanish as the
test data. Note that we adopt PCA (with 60% energy pre-
served) to reduce the feature dimensionality. Compared to the
original high-dimensional TF-IDF feature, the dimensions of
the reduced feature in each domain are 1, 131, 1, 230, 1, 417,
1, 041, and 807 for English, French, German, Italian, and
Spanish, respectively.

4.2. Classification Results

We first compare our LS-UP with SVMt, which utilizes only
labeled target domain data to train standard SVMs for classi-
fication purposes (i.e., no adaptation). Besides this baseline
approach, we also compare our LS-UP with two state-of-
the-art methods: (1) MMDT [9], a maximum-margin do-
main transform method for HDA, and (2) SHFA[10], a
semi-supervised heterogeneous feature augmentation-based
domain adaptation method. It is worth noting that, when
conducting the experiments, we directly apply the released
code of MMDT and SHFA for fair comparisons. In our
evaluation, we randomly sample the training and test data
as described in Section 4.1 by 20 times, and report the av-
eraged classification accuracies as well as the corresponding
standard deviations of all methods.

Object recognition:
Table 1 lists the averaged classification results for cross-
domain object recognition of all methods. It is obvious that,
without performing adaptation, SVMt produces the low-
est accuracy due to only a limited amount of labeled data
is utilized in the target domain. When advancing domain
adaptation, such as MMDT, SHFA, and ours, the results
are improved by a clear margin. Since our LS-UP performs
favorably against the two recent HDA approaches, it can be
verified that our integration of matching class-conditional

data distribution with label and structural consistency would
be preferable for solving cross-domain object recognition.

Text categorization:
In Table 2, we report the classification results with picking
m = 10 labeled target domain data. It can be seen that
MMDT outperforms SVMt with 4% improvement in clas-
sification rate. Comparing to MMDT, SHFA further im-
proves 2.8%. Our LS-UP achieves the highest classification
rate, and thus is preferable for HDA.

For the completeness of our evaluation, we plot the clas-
sification accuracies with different label numbers per class
(i.e. m = 5, 10, 15, and 20) of labeled target domain data
for each source domain in Figure 2. It can be observed that
our proposed LS-UP method consistently outperforms other
HDA approaches, especially when m is small. Therefore, the
effectiveness of our proposed method in solving HDA prob-
lems can be successfully verified.

5. CONCLUSION

In this paper, we proposed Label and Structure-consistent
Unilateral Projection (LS-UP) for solving HDA problems.
Our LS-UP is able to project labeled source-domain data
into the target domain, while the cross-domain data exhibit
distinct feature dimensionality or distributions. In addition
to matching cross-domain class-conditional data distribution,
we further enforce the label and data consistency observed
from the source domain. This is the reason why improved
adaptation and classification performance can be jointly ex-
pected. Our experiments on object recognition and text cate-
gorization verify that our LS-UP achieves satisfactory results
and performs favorably against recent HDA approaches.
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