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ABSTRACT

Current multi-modal emotion recognition from physiological
signals requires electroencephalogram(EEG) signals and pe-
ripheral physiological signals during both training and test.
Compared with the peripheral physiological signals, it is more
difficult to obtain EEG signals in our daily life. Therefore,
we propose a novel approach to recognize emotions from pe-
ripheral signals by using EEG features as privileged informa-
tion, which is only available during training. During training,
first, peripheral physiological features and EEG features are
extracted. Then, we construct a new peripheral physiolog-
ical feature space using canonical correlation analysis with
the help of EEG features. Finally we train a support vec-
tor machine(SVM) to map the new peripheral physiological
features to the emotion labels. During test, only peripheral
physiological features are used to recognize emotions from
the constructed peripheral physiological feature space with
the trained SVM model. The experimental results on two
benchmark databases show that our proposed approach us-
ing EEG features as privileged information outperforms the
method which recognizes emotions merely from the periph-
eral physiological signals.

Index Terms— Emotion Recognition, EEG, Peripher-
al Physiological Signals, Privileged Information, Canonical
Correlation Analysis

1. INTRODUCTION

Emotion recognition from physiological signals has attracted
increasing attention due to its great potential during human-
computer interaction. Current research recognizes emotions
from either one physiological modality [1][2] or the combi-
nation of several physiological signals (i.e. both peripheral
signals and EEG signals) [3][4][5]. The EEG signals reflec-
t emotion changes on the central nervous system, while the
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peripheral signals reflect the emotion influence on the auto-
nomic nervous system. These two systems have intrinsic rela-
tions. Therefore, emotion recognition by EEG and peripheral
signal fusion is promising. However, compared with periph-
eral signals, it is much difficult and expensive to obtain the
EEG signals which are collected using professional equip-
ments. Therefore, current multi-modal emotion recognition
from physiological signals, which requires electroencephalo-
gram(EEG) signals and peripheral physiological signals dur-
ing both training and test, is not practical.

Based on the above considerations, we propose a new
approach to classify emotions from peripheral signals with
the help of EEG signals. During training, both EEG signals
and peripheral physiological signals are required. A periph-
eral physiological feature space is constructed with the help
of EEG features using canonical correlation analysis (CCA).
During test, only the constructed peripheral physiological fea-
ture space is required. Thus, the EEG signals are used as
privileged information [6] [7], which is only available dur-
ing training to help peripheral physiological signals to con-
struct a better feature space. SVM is adopted to recognize
users’ emotions from the constructed peripheral physiologi-
cal features. Experimental results on two benchmark databas-
es demonstrate that our approach can improve the recognition
performance on both valence and arousal spaces. To the best
of knowledge, this is the first work to recognize emotion from
peripheral physiological signals by using EEG as privileged
information.

2. THE FRAMEWORK OF OUR METHOD

The framework of our method is shown as Fig. 1. We first
extract features from peripheral signals and EEG signals. In
the training phase, we create a new feature space for peripher-
al features using CCA with the help of EEG features and use
the new feature to train a SVM classifier. In the test phase, we
map the extracted peripheral features to the new feature space.
Then, we predict the emotion state for each sample based on
the new features. The EEG features are only available during
training to help the peripheral features to construct a better
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Fig. 1. The framework of our method

feature space as privileged information.

2.1. Feature extraction
2.1.1. Peripheral features

Peripheral signals include electrooculogram(EOG) signals,
electromyography(EMG) signals, electrocardiograph(ECG)
signals, galvanic skin response(GSR) signals, respiration(RSP)
signals, skin temptation(TEMP) signals and plethysmo-
graph(PLET) signals. Before extracting features, these phys-
iological signals should be preprocessed using band-pass
filters. For different physiological signals, different features
are extracted. The details of extracted features are summa-
rized in Table 1.

2.1.2. EEG features

To restrain the noise, we preprocessed EEG signals adopting
a band-pass filter with a lower cutoff frequency of 0.3Hz and
a higher cutoff frequency of 45Hz. Then the spectral power
from theta (4 Hz < f < 8 Hz), slow alpha (8§ Hz < f < 10 Hz),
beta (12 Hz < f < 30 Hz), and gamma (30Hz < f) bands are
extracted for EEG signals as features.

2.2. Constructing a new peripheral feature space

In this paper, we use CCA to construct a new peripheral fea-
ture space with the help of EEG features. The original pe-
ripheral features and EEG features are denoted as P and E
respectively. We use CCA to find the linear projection matrix
a and b, so that the transformed peripheral features F and the
transformed EEG features G have maximum correlation with

each other as shown in Eq. 1.
I 1 S )
PV RGO

where F and G are defined as follows.
F = Pa. 2
G =FEb. 3)

F will be used as the new peripheral features for training
and test. The relationships between P, E, a, b are follows:

(PTP)'PTE(ETE)'E" Pa = m?a . 4)

2828

Table 1. All features extracted from peripheral signals

Signal | Extracted features filters

EOG | Energy, mean and variance 0.4Hz

EMG | Energy, mean and variance 1Hz

HRY, root mean square of the mean
squared difference of successive beats,
standard deviation of beat interval
change per respiratory cycle, 14 spectral
power in the bands from [0, 1.5]Hz, low
frequency [0.01, 0.08]Hz, medium
frequency [0.08, 0.15]Hz and high
frequency [0.15, 0.5]Hz components of
HRV power spectrum, Poincare analysis
features(2 features)[1]

ECG 1Hz

Mean, mean of the derivative, mean of
the positive derivatives, proportion of
negatives in the derivative, number of
local minima, 10 spectral powers within
0-2.4Hz

GSR 3Hz

Band energy ratio, average respiration
signal, mean of the derivative, standard
derivation, range of greatest breath,

10 spectral powers within 0-2.4Hz,
average and median peak to peak time

RSP 0.45Hz

Mean, mean of the derivative, spectral

TEMP powers in 0-0.1 Hz and 0.1-0.2 Hz

3Hz

Average and standard derivation of HRV
and inter-beat intervals, energy ratio
between 0.04-0.15 Hz and 0.15-0.5 Hz,
spectral power in 0.1-0.2 Hz, 0.2-0.3 Hz,
0.3-0.4 Hz, 0.01-0.08 Hz, 0.08-0.15 Hz
and 0.15-0.5 Hz components of HRV

PLET 0.45Hz

(E"E)"'ETP(PTP)"'PTEb=m®b. (5)
Where m = a” PTEb. m is defined as the maximum eigen-
value of (PTP)"'PTE(ETE)~'ETP and a is the corre-
sponding eigenvector. Meanwhile, b is the eigenvector of
(ETE)"'ETP(PTP)~'PTE. For details, please refer to
[7] [8]. The projection matrix a will reflect the relation be-
tween peripheral features P and EEG features E.

In the training phase, we learn the projection matrix a and
we use the F to train the classifier for emotion recognition. In
the test phase, we first use a to project the peripheral features
to new feature space and use the new feature space to predict
the emotion states.

2.3. Classifier and emotion recognition

We adopt the SVM to recognize the users’ emotions from the
constructed peripheral features. The EEG features as privi-
leged information are only used in the training phase to con-
struct a better feature space for the peripheral features. In the



test phase, we predict the users’ emotions only with the con-
structed peripheral features. In the process of classification,
radial basis function is used as kernel function.

3. EXPERIMENTS

3.1. Experimental conditions

To validate the performance of our method, two bench-
mark databases are adopted: the DEAP database[9] and
the MAHNOB-HCI database[10].

The DEAP database records seven kinds of physiolog-
ical signals, EEG, EOG, EMG, ECG, GSR, RSP, TEMP
and PLET, from 32 participants during their watching music
videos. The MAHNOB-HCI database includes five kinds
of physiological signals, EEG, ECG, GSR, RSP and TEMP,
from 27 participants during their watching 20 videos. The
emotional self-assessment of both databases are in nine-scale
evaluations from 1 to 9 for valence and arousal. In our work,
we translate the ratings as positive or high if they are larger
than 5, otherwise, we translate them as negative or low. Thus,
we get 533 and 1216 EEG segments from the MAHNOB-HCI
database and the DEAP database respectively. Specifically,
for valence, 289 positive and 244 negative EEG segments, for
arousal, 268 high and 265 low EEG segments are from the
MAHNOB-HCI database. For valence, 672 positive and 544
negative EEG segments, for arousal, 726 high and 490 low
EEG segments are from the DEAP database.

To validate the effectiveness of our proposed method,
we conduct two group experiments, i.e. emotion recogni-
tion from a peripheral signal and emotion recognition from
peripheral signal combination. For each group experiment,
we compare three methods: emotion recognition from pe-
ripheral signals only, emotion recognition from peripheral
signals after principle component analysis (PCA) and our
method. For the first method, peripheral features described
in Section 2.1 are used. For the second method, peripheral
features after feature selection using PCA are used. A 10-fold
cross-validation is applied to the experiments. Two metrics,
accuracy and averaged F1-score, are adopted to evaluate the
performance of emotion recognition.

3.2. Experimental results and analyses
3.2.1. Emotion recognition from a peripheral signal

The results of emotional recognition from each peripheral sig-
nal on the DEAP database and the MAHNOB-HCI database
are shown in Table 2 and Table 3 respectively.

From Table 2 and Table 3, we find that compared with
the method recognizing emotion merely from the peripheral
signal, our method using EEG features as privileged infor-
mation has better performance on valence and arousal spaces
recognition on the two databases, since both accuracies and
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Table 2. Emotional recognition results on DEAP

valence arousal

accuracy | Fl-score | accuracy | Fl-score
EOG 0.5551 0.5105 0.5691 0.5055
EOG+PCA 0.5518 0.5309 0.5403 0.4920
Ours 0.5428 0.5332 0.5567 0.5346
EMG 0.5444 0.5208 0.5526 0.4967
EMG+PCA | 0.5304 0.5063 0.5461 0.4928
Ours 0.5543 0.5441 0.5650 0.5374
RSP 0.5411 0.5271 0.6053 0.5718
RSP+PCA 0.5304 0.5172 0.5707 0.5452
Ours 0.5748 0.5626 0.6044 0.5808
GSR 0.5337 0.5241 0.5526 0.5176
GSR+PCA 0.5099 0.5027 0.5584 0.5349
Ours 0.5567 0.5458 0.5863 0.5582
PLET 0.5543 0.5258 0.5806 0.5213
PLET+PCA | 0.5304 0.5047 0.5600 0.5027
Ours 0.5419 0.5199 0.6209 0.5761
TEMP 0.5518 0.5262 0.5740 0.5157
TEMP+PCA | 0.5411 0.5328 0.5403 0.5174
Ours 0.5543 0.5406 0.5970 0.5395
ALL 0.5510 0.4915 0.6151 0.5106
ALL+PCA 0.5526 0.5253 0.5757 0.5519
Ours 0.5814 0.5752 0.6271 0.6018

F1-scores of our method are higher than those of recognizing
emotion from peripheral signal only in most cases.

For both valence and arousal recognition, using PCA has
negative impact on the performance of emotion recognition.
From Table 2 and Table 3, we can find that when using P-
CA, accuracies are decreased on the DEAP database and the
MAHNOB-HCI database in most cases. The goal of PCA is
to find a set of values of linearly uncorrelated variables called
principal components using an orthogonal transformation. P-
CA find an orthogonal peripheral physiological space with no
extern information, while CCA find an orthogonal peripher-
al physiological space enhanced by EEG. CCA can take ad-
vantage of the information from EEG in the training phase.
Furthermore, using PCA might cause information loss since
part of the faithful features have been removed during feature
selection. Therefore, our method using CCA can construct a
better feature space.

The performance of arousal recognition is better than va-
lence recognition on both databases, since both accuracies
and F1-scores of arousal recognition are higher than those of
valence recognition for all the cases. It may indicate that it is
easier to recognize arousal than valence.

To further evaluate the effectiveness of the proposed
method, we conduct the above 10-fold cross-validation ex-
periment 10 times, and apply t-test to check whether the
improvement using the privileged information is significant
or not based on the accuracy on valence and arousal space.



Table 3. Emotional recognition results on MAHNOB-HCI

valence arousal

accuracy | Fl-score | accuracy | Fl-score
ECG 0.5197 0.5033 0.5816 0.5793
ECG+PCA 0.5122 0.5000 0.5704 0.5702
Ours 0.5460 0.5368 0.6360 0.6360
RSP 0.5235 0.5167 0.5779 0.5779
RSP+PCA 0.5328 0.4961 0.5253 0.5230
Ours 0.5572 0.5478 0.6079 0.6197
GSR 0.5422 0.5373 0.6098 0.5996
GSR+PCA 0.5216 0.5142 0.5779 0.5649
Ours 0.5760 0.5561 0.6060 0.6059
TEMP 0.5122 0.5081 0.5328 0.5328
TEMP+PCA | 0.5328 0.4903 0.5253 0.5252
Ours 0.5516 0.5476 0.5403 0.5401
ALL 0.5066 0.4774 0.6004 0.6002
ALL+PCA 0.5159 0.3863 0.5647 0.5641
Ours 0.5741 0.5514 0.6135 0.6125

As shown in Table 4, the p-values on the DEAP database and
HCI database are less than 0.05 in most cases, demonstrating
that the improvement of emotion recognition caused by using
EEG as privileged information is significant.

3.2.2. Emotion recognition from peripheral signal combina-
tion

Since there are six and four kinds of peripheral signals on
the DEAP database and the MAHNOB-HCI database respec-
tively, the number of peripheral signal combinations is very
larger. Due to the page limit, we only conduct emotion recog-
nition from one kind of peripheral signal combination, i.e. all
the peripheral signals provided by the database. The results
of emotional recognition from peripheral signal combination
are shown in the last line of Table 2 and Table 3.

From the two tables, similar observations as those of e-
motion recognition from a peripheral signal can be obtained.
First, the emotional recognition results using EEG as privi-
leged information are superior to the results merely using pe-
ripheral features. Second, the emotional recognition results
using PCA are not always better. Third, the performance of
arousal recognition is better than valence recognition.

To further evaluate the effectiveness of our model, we
conduct the above 10-fold cross-validation experiment 10
times, and apply t-test to check whether the improvement
using the privileged information is significant or not based on
the accuracy. From the last line of Table 4, we can find that
the performance of our method using EEG as privileged in-
formation increase significantly compared with that of merely
using EEG features on both valence and arousal spaces, since
all the p-values are less than 0.05.
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Table 4. Results of t-test

valence arousal
EOG 0.8137 0.0011
EMG 0.0085 0.0429
RSP 0.0334 0.0533
DEAP GSR | 3.3842E-05 | 6.5233E-10
PLET | 2.5358E-04 | 9.5327E-08
TEMP 0.4065 2.6405E-05
ALL | 1.0683E-05 | 2.0358E-04
ECG | 7.7740E-04 | 6.9241E-10
RSP | 8.9676E-05 | 1.1788E-04
MAHNOB-HCI GSR 0.2818 0.0066
TEMP | 1.7356E-04 0.0276
ALL | 6.5797E-09 0.0061

Table 5. Comparison results on DEAP

Ours | peripheral signals [9]
valence|_2ccuracy 0.581 0.627
Fl-score | 0.575 0.608
arousal |_2ceuracy 0.627 0.570
Fl-score | 0.582 0.533

3.3. Comparison with related works

Koelstra et.al [9] proposed a method for emotion recognition
using peripheral physiological signal combination with the
same experimental conditions. We compare with their works
on the DEAP database. The details are shown in Table 5. On
valence space, the results are slightly worse than their work-
s. On arousal space, compared with their work only using
peripheral signals, accuracy and Fl-score are increased by
0.057 and 0.049. Totally, our method is comparable with their
works and even better than theirs. On the MAHNOB-HCI
database, most works divided emotions into three categories.
Hence, it is unable to compare with them directly.

4. CONCLUSIONS

In this paper, we propose a new emotion recognition method
from peripheral signals with the help of EEG signals. Specif-
ically, EEG signals, which have intrinsic relations in physiol-
ogy with peripheral signals, are used as the privileged infor-
mation, which is only required during training. The CCA is
adopted to model the relationships between peripheral signals
and EEG signals, and thus construct a better peripheral feature
space enhanced by EEG signals during training. Then, SVM
is trained to map the new peripheral physiological features to
the emotional labels. Experimental results on two benchmark
databases show that our method can improve the recognition
performance for each individual peripheral signals and their
combination on both valence and arousal spaces, verifying
the effectiveness of our proposed method.
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