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ABSTRACT

This paper addresses the problem of continuous emotion predic-
tion in movies from multimodal cues. The rich emotion content in
movies is inherently multimodal, where emotion is evoked through
both audio (music, speech) and video modalities. To capture such
affective information, we put forth a set of audio and video fea-
tures that includes several novel features such as, Video Compress-
ibility and Histogram of Facial Area (HFA). We propose a Mix-
ture of Experts (MoE)-based fusion model that dynamically com-
bines information from the audio and video modalities for predict-
ing the emotion evoked in movies. A learning module, based on
hard Expectation-Maximization (EM) algorithm, is presented for the
MoE model. Experiments on a database of popular movies demon-
strate that our MoE-based fusion method outperforms popular fusion
strategies (e.g. early and late fusion) in the context of dynamic emo-
tion prediction.

Index Terms— Emotion prediction, Multimodal, Fusion, Mix-
ture of Experts

1. INTRODUCTION

Autonomous emotion recognition systems find their place in numer-
ous applications. Computers with the ability to recognize the emo-
tion evoked by media contents can be used to build better human
assistive systems [1]. A software capable of recognizing the contin-
uous dynamic emotion evoked by videos can be used for building
better personalized video recommendation systems. Emotion recog-
nition systems are very helpful in autonomous video summarization
and key event detection tasks [2, 3]. Moreover the emotion profile
of a movie, i.e. the continuous dynamic emotion evoked by a movie,
can be used as hidden layer in predicting outcomes like success and
gross income of a movie.

Related Works: Affective analysis in music has been an actively
researched area [4] and several well performing systems for predict-
ing emotion in music exist. As compared to emotion prediction in
music, emotion prediction in movies is a much more challenging and
complex task. In movies, there is a complex interplay between audio
and video modalities that determines the perceived emotion. This
interaction between modalities is highly dynamic in nature, in the
sense that the relative contribution of modalities in emotion predic-
tion may change during the course of the movie. For example let us
consider a movie scene which begins with an accompanying musical
soundtrack, but the music fades away as the scene proceeds. In such
a scene, musical cues would be initially important in setting up the
mood, but as we proceed, the visual cues might contribute more to
the perceived emotion. Therefore a multimodal framework, which

can dynamically captures the interaction between the modalities is
necessary for determining the evoked emotion in movies.

Much of the research done in the field of emotion prediction
from audio-visual content has focused on accomplishing specific
tasks. Chen et al. in [2] were trying to detect violent scenes in a
movie. In [5], Nepal et al. focused on automatically detecting goal
segments in basketball videos. Recent works have tried to determine
categorical emotions in media content. Jiang et al. in [6] and Kang
et al. in [7] proposed systems for predicting categorical emotion la-
bels for videos. Some researchers have narrowed their attention on
affective analysis of movies from specific genres. Xu et al. analyzed
horror and comedy videos by doing event detection using audio cues
[8].

A system capable of determining the emotion evoked by a video
continuously over time can be very useful in all the above tasks.
So in this work, we try to determine emotion evoked by a video by
predicting continuous scale and time arousal-valence curves, and by
validating them against human annotated values. We put forth a set
of audio and video features that can be used for the task, and also
propose several new video features like Video Compressibility and
Histogram of Face Area (HFA). We explore different fusion mod-
els and show how the complementary information present in audio
and video modalities can be exploited to predict emotion ratings. Fi-
nally, we propose a Mixture of Expert (MoE)-based fusion model
that jointly learns optimal fusion weights for the audio and video
modalities in a data-driven fashion. We present a learning algorithm
based on hard Expectation-Maximization (EM) for the MoE-based
fusion model.

2. THE DATASET AND THE EXPERIMENTAL SETUP

In the current work we have used the dataset described in [3, 9].
The dataset consists of 12 video clips, each from a different movie
and around 30 min long. The movies in the dataset have won the
Academy Award, and are from different genres. For each video clip,
there are two curves, one for intended/evoked valence and the other
for arousal. These curves vary in range from −1 to 1 and are sam-
pled at a rate of 25 Hz. On doing a frequency response analysis
of these curves, we found that more than 99% of their energy was
contained in frequencies less than 0.2 Hz. This implies that the emo-
tions vary slowly with time, and it is sufficient to sample arousal and
valence ratings at every 5 sec interval. So we split all movies into
non-overlapping 5 sec samples, giving us around 3800 samples with
one valence and arousal rating associated with each sample. For
each of these samples, we separate the audio and video channels and
extract audio and video features from each, as described in Sec.3.
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3. FEATURE DESIGN

Various features have been proposed in the literature for the emo-
tion recognition task. In addition to this list of audio and video
features we propose two novel features: Video Compressibility and
Histogram of Facial Area (HFA). The features used in the current
work are described as follows.

3.1. Audio features
Mel Frequency Spectral Coefficients (MFCC) and Chroma:
MFCC and Chroma [10] features have been widely used in emo-
tion recognition tasks. We extract MFCC features for each 25 ms
window with 10 ms shift and the Chroma features for each 200 ms
window with a shift of 50 ms. We also compute Delta MFCC and
Delta Chroma features, which are time derivatives of the MFCC and
Chroma features respectively. Finally for each sample, we compute
statistics (mean,min,max) of the previously mentioned features.

Audio Compressibility: This audio feature was introduced in [11],
where it had been shown to be highly correlated with human an-
notated arousal and valence ratings. For an audio clip, the Audio
Compressibility feature is defined as the ratio of the size of losslessly
compressed audio clip to raw audio clip. We compress the raw audio
using the FLAC lossless codec [12] using ffmpeg [13] and include
the ratio of the size of the compressed audio clip to original audio
clip as a feature.

Harmonicity: The presence of music in a media content helps in
triggering emotional response in the viewers [14]. To capture this
information, we use Harmonicity feature which was introduced in
[15] as a measure of presence of music in an audio clip. We firstly
divide a sample audio clip into 50 ms mini clips and extract pitch in
each of these 50 ms clip using the aubio tool [16]. Harmonicity for
that sample audio clip is then taken as the ratio of number of 50 ms
clips that have a pitch to the total number of 50 ms clips.

3.2. Video features
Shot Frequency: Cuts in the video have been widely used by cine-
matographers to set the pace of action [17]. In order to capture this
information, we follow an approach similar to that in [18]. We detect
shots, i.e. the sequence of frames recorded continuously by a cam-
era, in the sample video clip using ffmpeg [13] and count the total
number of shots present.

Histogram of Optical Flow (HOF) : Motion or activity in a scene
affects the emotional response of viewers [19]. For capturing this in-
formation we use the HOF feature [20]. First, we extract the Lukas-
Kanade Optical Flow [21] for all frames except the ones near a shot
boundary. Frames near a shot boundary were excluded because they
would exhibit a spurious high optical flow value because of discon-
tinuity. Corresponding to each frame for which optical flow is cal-
culated we construct a 8 bin histogram as follows. For each optical
flow vector [x, y] in a frame, we calculate its angle with the posi-
tive x axis i.e equal to tan−1(x

y
) and find the bin in which it will

lie, using the fact that the ith bin represents angles ∈ [ (i−1)π
4

, (i)π
4

].
Then its contribution to that bin is taken proportional to its L2 norm
as
√
x2 + y2. We have opted for an 8 bin histogram because it is ro-

bust and sufficient for the task. For each sample video clip we then
compute statistics of the HOF features across its frames.

3d Hue Saturation Value (HSV) Histogram: Color has a signifi-
cant influence on the human affective system [22, 23]. This infor-
mation is captured using the 3d HSV feature. First we convert the
frames from RGB to HSV color space. Then for each frame we con-
struct a 3d Histogram as follows. We quantize each of the hue, satu-
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Fig. 1: Plot showing the variation in scaled video compressibility
and scaled arousal value for a sample movie

ration and value into 4 equal sized intervals. So a pixel has 4 choices
for hue, 4 for saturation and 4 for value, and therefore it can lie in
any of the 4 × 4 × 4 (64) bins. Finally for each sample video clip,
we compute statistics from the 3d HSV Histogram features across
all the frames in it.

Video Compressibility: Along the lines of audio compressibility,
we define a video compressibility feature to capture aspects of mo-
tion and change in a video. Most video compression algorithms tend
to exploit redundancy in video information over time by using mo-
tion and change predictions. As we expect them to be correlated
with the perceived emotion ratings, we use video compressibility as
a compact feature to combine the effects of such factors over a clip.
To calculate video compressibility for a sample video clip, we first
compress the raw video with the lossless huffyuv [24] codec using
ffmpeg [13] and then calculate the ratio of the size of the compressed
video to the original raw video. We have found that the video vom-
pressibility feature has a correlation −0.25 with human annotated
arousal values. The p-value for the correlation is 0, asserting that
the correlation is significant. We have plotted the variation in scaled
arousal values and scaled video compressibility for a movie sample
in Fig.1, where we can clearly observe how video compressibility
and arousal values vary inversely.

Histogram of Facial Area (HFA): Face closeups have been fre-
quently employed by cinematographers to attract the attention of the
audience and evoke aroused emotions [25]. We attempt to extract
this information using the HFA feature. We begin by carrying out
face detection in all the frames using a Deep Convolutional Network
based face detector [26]. Of all the faces detected in a frame, the
ones with the largest area is taken as the primary face. For a sam-
ple video clip, we detect the primary faces in all the frames. All the
frames containing a face are binned according to the primary face
area to construct a histogram. We construct a 3 bin histogram, with
the bins representing small, medium and large sized faces. Fig.2
shows the formation of HFA for a sample video clip.

Fig. 2: Schematic representation showing the formation of His-
togram of Face Area (HFA) for a sample video
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4. SYSTEMS FOR EMOTION PREDICTION

As described in Sec.2, it is sufficient to predict valence and arousal
ratings for a movie at an interval of 5 sec. To accomplish this task
we split each movie into non-overlapping 5 sec sample clips and ex-
tract the above mentioned audio and video features from them. We
learn different regression models which try to predict the arousal and
valence ratings corresponding to each sample from the extracted fea-
tures. We perform a leave one movie out cross validation. For all the
experiments, we learn independent models for arousal and valence
using the sample clips from training movies. These models are then
used to predict arousal and valence ratings for every 5 sec sample on
the held out test movie. To incorporate the temporal context infor-
mation, we apply a temporal Gaussian smoothing on the predicted
values. This ensures that the predicted value for each clip is consis-
tent with its neighbors. The length of the smoothing window in case
of arousal is represented as lar and in case of valence as lvl. For
each model, lar and lvl are chosen through a grid search on the cross
validation sets so as to maximize the performance of that model.

4.1. Audio Only, Video Only and Early Fusion

In the audio only and video only model we try to predict the arousal
and valence values using only the audio features or video features.
We learn a simple linear regression model to predict the arousal and
valence values from the features of each sample clip. We also tried
other regression models like Support Vector Regression and Gaus-
sian Process Regression but there was not much improvement in the
prediction so we focused on simple linear regression. In the early fu-
sion model we simply concatenate the audio and video features and
learn a linear regression model using the fused feature vector.

4.2. Late Fusion Model

In the case of the late fusion model, we learn two independent mod-
els, one from only the video features and other from only the audio
features. Then we try to fuse the predictions from the two models to
give the final prediction.

Let y(v) be the prediction from the video features and y(a) be
the prediction from the audio features, then final prediction y(pre) is
given by Eqn.1. Please note the value of α remains the same for all
samples across all the cross validation folds and its value is chosen
so as to maximize the correlation between the actual and predicted
values. We further analyze the performance of the late fusion model
with changing α in Sec.6 using Fig.4.

y(pre) = αy(v) + (1− α)y(a) , α ∈ [0, 1] (1)

4.3. Proposed Mixture of Experts (MoE)-based Fusion Model

In the MoE-based model we have two experts, one that uses the au-
dio features, and the other that uses the video features. Along with
these experts, we have a gating function, which determines the con-
tribution of each expert in the final prediction. The final prediction
for the MoE-based model is very similar to the Late Fusion model
except for the fact that here we don’t have a fixed α. The value of
α depends on the audio and video features of the current sample. So
the MoE-based model can be thought of as comprising of two in-
dependent learners and a gating function, where the gating function
decides the contribution of each learner, as shown in Fig.3.

Let y1, y2, .., yn be our target labels, x
(a)
1 ,x

(a)
2 , ..,x

(a)
n be

the audio features, x
(v)
1 ,x

(v)
2 , .., x

(v)
n be the video features and

x
(z)
1 ,x

(z)
2 , ..,x

(z)
n be the features for determining α in each sam-

ple. In general one can choose any feature set for x
(z)
i . In our

Fig. 3: Schematic representation of Proposed Mixture of Experts
(MoE)-based Fusion Model

case we first concatenated all the audio and video features and then
did a Principal Component Analysis (PCA) [27] to reduce their di-
mension. The principal components explaining 90% of the variance
were retained in order to construct x(z)

i . The predicted label for the
ith sample, y(pre)i is given by Eqn.2, where ωa, ωv and ωz are the
parameters associated with the model

y
(pre)
i = αiy

(v)
i + (1− αi)y(a)i

where y
(a)
i = ωᵀ

ax
(a)
i , y

(v)
i = ωᵀ

vx
(v)
i ,

αi =
1

1 + e−ωᵀ
zx

(z)
i

(2)

In order to learn the parameters of the model, we follow an algorithm
similar to hard expectation maximization as described next. The loss
function, L(ωa,ωv,ωz) depends on the parameters of the model,
and is given by Eqn.3.

L(ωa,ωv,ωz) =

n∑
i=1

{
yi − y(pred)i

}2

=

n∑
i=1

{
yi − αiy(v)i − (1− αi)y(a)i

}2

=

n∑
i=1

{
yi −

ωᵀ
vx

(v)
i

1 + e−ωᵀ
zx

(z)
i

−

(
1− 1

1 + e−ωᵀ
zx

(z)
i

)
ωᵀ

ax
(a)
i

}2

(3)

The task of the learning algorithms is to estimate parameters ωa,ωv

and ωz that minimize the loss function. We adopt a co-ordinate
descent approach and subdivide the algorithm into two steps corre-
sponding to the individual learners and gating function respectively.
We start by randomly initializing the parameter values, and then re-
peat the following steps iteratively till convergence.
STEP I : In this step we fix ωz and try to minimize the loss function
by estimating optimal values for ωa and ωv . Since αi,∀i depends
only on ωz and x

(z)
i , they are also fixed in this step.

minimize
ωa,ωv

n∑
i=1

{
yi − αiy(v)i − (1− αi)y(a)i

}2

minimize
ωa,ωv

n∑
i=1

{
yi − ωᵀ

vαix
(v)
i − ωᵀ

a(1− αi)x
(a)
i

}2

minimize
ωa,ωv

n∑
i=1

{
yi −

[
ωv

ωa

]ᵀ [
αix

(v)
i

(1− αi)x(a)
i

]}2

(4)
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From Eqn.4, it is clear that ωa and ωv can be found by solving
the linear regression problem which tries to predict yi∀i using
[αix

(v)
i (1− αi)x(a)

i ]ᵀ as the feature vector.
STEP II : In this step we try to minimize the loss function by chang-
ing ωz keeping ωa and ωv fixed. This is achieved by following a
gradient descent formulation where the gradient is given by Eqn.5.

∂C

∂ωz
= 2

n∑
i=1

{
[yi − αiy(v)i −

(1− αi) y(a)i ]αi(1− αi)
(
y
(v)
i − y

(a)
i

)
x

(z)
i

}
(5)

5. EVALUATION

As briefly mentioned in Sec.4, we perform a leave one movie out
cross validation to test the performance of different models. For
each model we compute the mean absolute Pearson correlation co-
efficient (PCC) between the predicted label and ground truth label
for all movies. ρar refers to the mean of absolute PCC between
predicted and ground truth arousal values, and similarly ρvl refers
to the mean absolute PCC between predicted and ground truth va-
lence values. For arousal the PCCs in all cases is positive so mean
absolute PCC would be same as mean PCC. But, for valence we
sometimes get negative PCC. This can be attributed to the fact that
unlike arousal, valence requires much higher cognitive thinking, and
similar audio-visual features can elicit very different valence. For
example a fighting scene can evoke very different valence response
depending on whether the hero, or the villain is dominating. Simi-
larly, a laughing scene takes opposite sign on the valence scale de-
pending on whether it is the hero, or villain who is laughing. The
models proposed are unable to capture this aspect of valence, and
sometimes automatically give inverted prediction for valence, result-
ing in significant negative PCC with the ground truth valence.

Out of the 12 movies in the dataset, 2 are animated. Since the
video features for an animated movie would be very different from
an usual movie, we have excluded the 2 animated movies from the
video and fusion models. We have evaluated the audio model twice,
once with the animated movies and once without them. The audio
model with animated movies is referred to as Audio Only1, and the
audio model without them is referred to as Audio Only2.

6. RESULTS AND OBSERVATIONS

Table 1 shows the ρar and ρvl value for different models. We have
considered the Early Fusion Model as our baseline. It can be seen
that fusion models perform better than individual audio or video
models. This shows that audio and visual modalities contain com-
plementary information, and their fusion helps in emotion predic-
tion. Also, in all the models the prediction for arousal is better than
that for valence. This can be attributed to the fact that valence pre-
diction requires higher semantic information and cognitive thinking,
and is therefore far more challenging than arousal prediction. Fur-
thermore, it can be seen that there is a large variance in result for
all the models. This can be attributed to the fact that the dataset has
movies belonging to many different genres, and a common model
is unable to describe all of them. The proposed MoE-based fusion
model, which dynamically adjusts the contribution from audio and
video modalities outperforms all other models. Overall, considering
the complexity of the task, the MoE-based model does a good job in
predicting the valence and arousal curves.

As mentioned in Sec.4, we apply a Gaussian window at the end
of each model to incorporate the context information. This increases
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Fig. 4: Plots showing the variation in ρar and ρvl with α for the Late
Fusion Model

the agreement between neighbors. We found that lvl > lar for all
the models, which clearly shows that valence requires a longer con-
text information than arousal. Further we investigated how audio
and video modalities contribute to the final prediction in the case
of the Late Fusion model. We have plotted the change in ρar and
ρvl with changing value of α in Fig.4. Please note that α = 0 cor-
responds to the Video Only Model and α = 1 corresponds to the
Audio Only Model. From the plots, we can see that α = 0.56 for
the best performing arousal system, and α = 0.91 for the best per-
forming valence system. We can conclude that in our model, audio
and video contribute almost equally for arousal prediction, but for
valence prediction audio contributes more.

7. CONCLUSIONS

In this paper we addressed the problem of tracking time varying con-
tinuous emotion ratings using multimodal cues of media content. We
suggested a list of audio and video features suitable for the task,
including novel features like Video Compressibility and HFA. We
compared and analyzed the performance of audio only, video only
and fusion models. Further we proposed a MoE-based fusion model
which dynamically fuses the information from the audio and video
channels and outperforms the other models. We also presented a
hard EM based learning algorithm for the MoE-based model. The
MoE-based model in general performs well in the emotion recog-
nition task except sometimes for valence when high level semantic
information is required. Future research and development of sys-
tems that can capture the semantic information in a video can help
in improving the emotion prediction models.

Model ρar ρvl

Audio Only1 0.56± 0.23 0.24± 0.15
Audio Only2 0.54± 0.23 0.24± 0.15
Video Only 0.49± 0.18 0.16± 0.12

Baseline (Early Fusion) 0.58± 0.17 0.22± 0.12
Late Fusion 0.59± 0.2 0.24± 0.14

Proposed MoE 0.62 ± 0.16 0.29 ± 0.16

Table 1: Performance of different models in predicting continuous
in time and scale arousal-valence curves
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