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ABSTRACT 

Visual analysis algorithms have been mostly developed for a centra-
lized scenario where all visual data is acquired and processed at a 
central location. However, in visual sensor networks (VSN), several 
constraints in computational power, energy and bandwidth require a 
radically different approach, notably a paradigm shift from centra-
lized to distributed visual processing. In the new paradigm, visual 
data is acquired and features are extracted at the sensing nodes loca-
tions to be after transmitted to enable further analysis at some central 
location. In such scenario, one of the key challenges is to design 
suitable feature coding schemes that are able to exploit the correla-
tion among the features corresponding to (partially) overlapped 
views of the same visual scene. To achieve efficient coding, it is 
proposed to employ the distributed source coding paradigm as it does 
not require any communication between the sensing nodes (rather 
expensive in VSN) and it is parsimonious in terms of computational 
resources. Experimental results show that significant accuracy and 
compression gains (up to 37.36%) can be achieved when coding 
features extracted from multiple views. 

Index Terms — distributed source coding, feature coding, multi-
view coding, visual sensor networks. 

1. INTRODUCTION 

In visual sensor networks (VSN), a visual scene is simultaneously 
acquired from multiple viewpoints by a network of distributed cam-
eras [1]. Typically, VSNs have a large number of low-power sensing 
nodes, equipped with vision capabilities and enabling important im-
age processing applications such as wireless visual surveillance, 
environmental monitoring and augmented reality. In a VSN, a large 
number of sensing nodes transmit data to sink nodes which have 
plenty of computational resources. 
   In this paper, the problem of object recognition in low-power and 
low-bandwidth distributed VSN is addressed, especially targeting 
applications such as visual surveillance where the tracking and iden-
tification of objects of interest is critical. By using a network of sens-
ing nodes, it is expected that problems such as occlusions, illumina-
tion and pose variations can be solved and the object recognition 
accuracy improved by using information from several views of the 
visual scene at the sink node. However, the large bandwidth required 
by the nodes can far exceed the network resource constraints. This 
implies that new solutions for processing and communication of 
visual data are needed.  
   Nevertheless, the processing, coding and communication of visual 
data is shifting from centralized to distributed settings, due to the 
associated benefits in terms of scalability, reliability and task perfor-
mance. Instead of transmitting compressed videos or images to a 
centralized location where the analysis is performed, sensing nodes 
(with cameras) perform a part of the processing by extracting and 
compressing local features. While the feature-based representation 
can be made more compact than the pixel-based representation, it is 
simultaneously possible to obtain significant energy and bandwidth 
savings that suits well the resource constrained VSN.  
   To address the VSN bandwidth limitations, efficient coding tech-

niques are needed. The problem of efficiently compressing local 
features extracted from still images and video sequences has been 
already addressed, notably by exploiting the Intra-frame [2] and 
Inter-frame correlations [3]. This work proposes and evaluates a 
distributed coding architecture for the visual features extracted from 
multiple overlapping views, thus exploiting the Inter-view correla-
tion. This feature coding scheme is inspired by the practices used in 
the field of multi-view video distributed coding and it can be applied 
to both real-valued features such as SIFT [4] and SURF [5] and 
binary features such as BRIEF [6], BRISK [7] and FREAK [8]. 
   The proposed Multi-view Distributed Feature Codec (MDFC) is 
based on the popular DISCOVER codec proposed for (pixel-based) 
mono-view video coding [9]. In distributed feature coding, the cor-
relation between sets of features extracted from different views (thus 
different sensing nodes) is exploited at the decoder side, which 
means that the cameras do not need to communicate among them. 
Since the Inter-view correlation is exploited only at the decoder side 
(sink node), a simplified network architecture with minimal routing 
overhead and lower bandwidth requirements can be achieved. In 
addition, the encoder architecture is rather simple, which better suits 
the VSN scenario where cameras are battery operated and cannot 
communicate among each other. In this paper, side information (SI) 
creation and correlation noise model (CNM) estimation techniques 
are proposed to exploit the Inter-view correlation. When the correla-
tion between features extracted from different views is low, e.g. parts 
of the image from one view are occluded in other view, an Intra 
decoding mode is instead used.  
   The rest of this paper is organized as follows: in Section 2, related 
work is reviewed. After, Section 3 proposes the novel MDFC codec 
and Sections 4 and 5 the two novel tools, notably the SI creation 
mechanism and the CNM. Section 6 presents and discusses the ex-
perimental results while Section 7 concludes the paper. 

2. RELATED WORK 

Recently, several works in the literature have addressed the problem 
of efficiently compressing local features extracted from images and 
videos. The available coding schemes exploit the correlation between 
i) elements of each descriptor (Intra-descriptor) [2] or ii) descriptors 
(Inter-descriptor) [10]. Techniques to code the local features extract-
ed from video sequences have also been proposed, exploiting the 
Intra-descriptor and Inter-frame correlation, i.e. descriptor predic-
tions are created based on previously decoded descriptors [3]. Also, 
the MPEG group has recently finished a standard [11] for compact 
descriptors which provides to enable interoperability in the context 
of image retrieval. These descriptors are compact, discriminative and 
efficient to extract and mainly target mobile visual search applica-
tions. However, only a small number of works address the problem 
of coding local features extracted from multiple video views. This 
problem is rather important for VSNs where battery-operated sensing 
nodes capture the same visual scene from different perspectives. In 
[12], object recognition is improved by integrating information from 
multiple viewpoints considering a network of cameras with limited 
computational power, bandwidth and communication capabilities. To 
avoid sending redundant visual information, an unsupervised multi-
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view feature selection algorithm based on a statistical model of the 
dependency between features is proposed. In this approach, local 
features are vector quantized into visual words and the frequency of 
each word is computed to form a histogram, a global representation 
of each image. In [13], an efficient object recognition system is 
proposed where the appearance of an object in multiple views is 
represented using feature histograms (global representation) and 
compressed using the theory of distributed compressed sensing. 
Thus, a sparsity-based distributed sampling scheme is employed, 
where SIFT features are extracted, quantized and then represented 
using a weighted histogram. In [14], a multi-view coding architecture 
suitable for non-binary and binary local features extracted from 
multiple views is proposed. Correlation between features extracted 
from multiple views is exploited using similar techniques to those 
used in the field of multi-view predictive video coding. In this work, 
the problem of coding local features is addressed but using a distrib-
uted coding approach which does not allow any communication 
between cameras and a more simplified encoder architecture with 
respect to [14]. 

3. PROPOSING A MULTI-VIEW DISTRIBUTED 
CODING SOLUTION FOR BINARY FEATURES 

To obtain a low bitrate representation for local binary features, it is 
necessary to perform clustering/quantization based on an offline 
learning dictionary. This dictionary of words (the centroids) must 
effectively represent the entire space of all possible binary descrip-
tors, typically a 512 dimensional space – the number of descriptor 
elements in each binary descriptor. In this case, each centroid repre-
sents a k binary cluster (set of similar descriptors), which is obtained 
using k-medians clustering with a k-means++ seeding [15]. The cen-
troids of each cluster are available at both the sensing node (camera) 
and sink node, where object recognition is performed. Also, rate 
control is performed at the decoder via feedback channel depending 
on SI quality obtained for each descriptor. Figure 1 shows the MDFC 
architecture which is described next. 

 
Figure 1 – MDFC codec architecture. 

   At the sensing nodes, the following operations are performed: 
1. Feature Detection and Extraction: the most salient keypoints of 

the image are detected and the binary descriptors representing the 
patches centered at each keypoint location computed. 

2. Nearest Neighbor Selection: The nearest centroid to the extracted 
descriptor is selected using as similarity metric the Hamming dis-
tance. 

3. Slepian-Wolf Encoder: Each descriptor corresponds to a binary 
vector that is independently encoded using a channel code. In this 
case, two channel codes can be used: Turbo [16] and LDPC [17]. 
As usual, the systematic part is discarded and only the parity in-
formation is transmitted to the decoder. For the LDPC code, the 
parity-check matrix corresponds to a 3rd order regular matrix [17]. 

4. Data Transmission: In the first data packet, the centroid ID that 
was identified in Step 2 is transmitted along with some parity data. 
The centroid ID occupies 12 to 16 bits for 4096 to 65536 centroi-
ds. Whenever needed for decoding convergence, the decoder re-
quests more parity data via the feedback channel. 

   The proposed MDFC decoder considers two modes that are adap-
tively selected: i) Intra and ii) Inter-view. In the Intra mode, only the 
correlation between each descriptor and the corresponding centroid is 
exploited while, in the Inter mode, the correlation between the des-

criptors in several views is exploited. With these two decoding 
modes, it is possible to efficiently model the binary descriptor statis-
tics in a multi-view VSN scenario, where correspondences (similari-
ties) between descriptors of different views are not always available, 
due to occlusions, field-of-view limitations and illumination varia-
tions. In such cases, the Intra mode is more efficient, while the Inter 
mode is more efficient when the correlation between descriptors 
from different views is high. The decoder attempts to decode the 
same descriptor twice, just as a predictive encoder performs Intra 
/Inter mode selection using rate-distortion optimization. The stop 
criterion of the channel decoder defines when the source is decoded 
(for the Intra or Inter modes) or when is necessary to ask for more 
parity bits, i.e. both Intra and Inter modes failed to decode the source. 
In summary, the following decoding steps are performed: 
1. SI Creation: First, the centroid ID is used to retrieve the centroid 

descriptor for Intra decoding. Also, the centroid ID can be used to 
identify a set of already decoded descriptors from other neighbor-
ing views that can be used to decode the source using the Inter 
mode. For the Intra mode, the SI corresponds to the centroid value 
(descriptor). For the Inter mode, two novel SI creation techniques 
are presented in Section 4. 

2. Correlation Noise Model: To make good use of the SI obtained 
in the previous step, the decoder needs to have a reliable CNM to 
characterize the statistical correlation between the original des-
criptors and the corresponding SI descriptors. The correlation 
noise corresponds to a virtual channel since the SI may be seen as 
a “corrupted” version of the original information. The soft infor-
mation to be used by the Slepian-Wolf decoder is computed with 
the novel technique presented in Section 5.  

3. Slepian-Wolf Decoder: An iterative decoding process is used 
where more parity bits are requested from the sensing node until 
the source is successfully Intra or Inter decoded. Notice that a 
feedback channel is usually available in many real VSN testbeds 
without introducing significant delay. When the turbo code is 
used, the stop criterion is based on the log-likelihood ratio (LLR) 
of each decoded bit. If the absolute value of a bit LLR is below a 
threshold of 4.6, the bit is considered as uncertain. When no more 
than 3 bits are defined as uncertain, the decoder claims that the 
source is fully decoded. In case a LDPC decoder is used, the stop 
criterion is the parity check of the sum-product algorithm [18]. In 
addition, an 8-bit CRC is used to guarantee a very small error de-
coding probability, i.e. near lossless decoding is achieved. 

4. INTER-VIEW SIDE INFORMATION CREATION 

As stated before, the Inter-view decoding mode tries to explore the 
spatial redundancy between views. To conditionally decode a new 
descriptor, it is necessary to create SI using already decoded descrip-
tors for any of the other views (called reference views). The Inter-
view SI creation module is therefore responsible to select which 
previously decoded descriptors (one or more) are well correlated 
with the descriptor being decoded. In the next two sections, two 
alternative Inter-view SI creation solutions proposed are described. 
4.1 Centroid Based Strategy (CBS) 
In a multi-view scenario, when the same feature is captured from two 
different views, the corresponding descriptors are quite similar. 
Thus, there is a high probability that descriptors representing the 
same point in the 3D space but acquired from different views belong 
to the same cluster, i.e. have the same centroid ID. Therefore, after 
receiving the centroid ID of a descriptor to be decoded, it is neces-
sary to search the previously decoded descriptors from other referen-
ce views (transmitted from other sensing nodes) to select those that 
are represented by the same centroid ID. When no descriptor is 
found, the nearest populated centroid (using a Hamming distance 
metric) is looked for and its descriptors used as side information. In 
both cases, the selected descriptors are used by the CNM. 
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4.2 Geometry Based Strategy (GBS) 
The second solution exploits the geometric position of the patch 
where the descriptors were extracted. When two sensing nodes cap-
ture the same objects, it is expected that similar pools of descriptors 
are transmitted by the sensing nodes but also that the geometric 
position of these descriptors can be characterized with a geometric 
model such as an affine or perspective model. The following proce-
dure is applied: 
1. Centroid Matching: The descriptors of the view to be decoded 

are represented by their centroids which are matched with each of 
the reference view descriptor centroids, i.e. the centroid ID is used 
to identify a set of similar descriptors for each new descriptor be-
ing decoded. This will provide coarse matching between descrip-
tors when compared to the full descriptor representation that is 
now only available at the encoder. 

2. Affine Model Estimation: Taking into account all the descriptor 
matches identified in the previous step, an affine model is estimat-
ed between the descriptors locations in the view being decoded 
and those in reference views. In this case, a set of homographies 
using the RANSAC algorithm with different maximum allowed re-
projection errors is first estimated. The homography model corres-
ponds to: 

!′
#′
1

=
ℎ'' ℎ'( ℎ')
ℎ(' ℎ(( ℎ()
ℎ)' ℎ)( 1

!′
#′
1

 

where ℎ'', ℎ'(,⋯ , ℎ)) are the homography model parameters, 
!′, #′ the descriptor location in a previously decoded view and !, # 
the descriptor location in the view to be decoded. The re-projec-
tion error corresponds to the model error, i.e. the error between 
each previously decoded descriptor location after transformation 
and the descriptor location in the view to be decoded. After, the 
homography closer to an affine transformation is selected, i.e. 
when ℎ)' < - and ℎ)( < -, i.e. last line of the transformation ma-
trix is close to [0,0,1]. Using this approach, the transformation al-
lowed is more restrictive (i.e. only translation, rotation, scale and 
shear) but also more robust. If no homography transformation ful-
filling ℎ)' < - and ℎ)( < - is found, the current view is discarded 
and another decoded view is processed next with the algorithm 
returning to Step 1.  

3. Warping: When a good homography is found, the transformation 
matrix is used to calculate a new set of locations on the reference 
view, i.e. the locations of the descriptors to be decoded are warped 
to the reference view. Afterwards, a window of 30×30 pixels is 
used, centered in each warped keypoint location and the previously 
decoded descriptors available in that window are retrieved. Then, 
the decoded descriptor, that is closer to the centroid value of the 
descriptor to decode, is used as side information. 

   After performing these same steps for all the reference views, the 
selected descriptors are sent to the CNM. For all the descriptors for 
which no good correlation with another view was found, the CBS 
decoding mode is used. 

5. CORRELATION NOISE MODEL ESTIMATION 

To make good use of the SI descriptors for decoding purposes, the 
decoder needs to have a reliable knowledge of the statistical model 
characterizing the correlation noise between the original descriptors 
X available at the encoder and the SI descriptors Y available at the 
decoder. In distributed video coding, the CNM between X and Y is 
typically modeled as a Laplacian distribution. However, this solution 
cannot be used here, since the source is a binary memoryless source 
where the symbols (‘0’ and ‘1’) have the same probability of occur-
rence. Thus, a binary symmetric channel (BSC) is a more adequate 
approach to characterize the correlation between X and Y. The BSC 
channel has two input symbols (!3 and !') and two output symbols 

(#3 and #'). The probability of observing #' at the decoder when !3 
is at the corresponding symbol at the encoder and the probability of 
observing #3 at the decoder when !' is at the encoder are the same 
and equal to the error probability, 4. In the proposed solution, the SI 
corresponds to a set of already decoded descriptors that are highly 
correlated with the source. However, instead of fusing the selected 
decoded descriptors to obtain a single descriptor (hard decision), it is 
proposed to use all selected descriptors to directly calculate the sym-
bol probability, i.e. 4(#3) and 4 #' , thus performing a soft decision. 
To allow a rather fine granular estimation, these probabilities are 
calculated for each descriptor element in the following way: 

78 = 4 9: = 0|	=:3, … , =:? =
@
A 

7B = 4 9: = 1|	=:3, … , =:? = 1 − 4 9: = 0|	=:3, … , =:?  
(1) 

where 9: represents the nth bit (or descriptor element) of the descrip-
tor to decode, N is the number of times that a descriptor element has 
the value #3 and M is the total number of descriptors selected as SI. 
When the descriptor element of all SI descriptors has the same value, 
i.e. an error probability of 0%, the correlation model sets 0.99 and 
0.01 as the limits for the probabilities 7B and 78. Finally, the soft 
information (probability) DEFGHIGH is computed as:  

DEFGHIGH 9: = JK(7B 78) (2) 

   The iterative soft decoding is performed with a LDPC or Turbo 
decoder using the soft information computed as in (2), and the en-
coder transmitted parity or syndrome information chunks. After, the 
(a posteriori) soft output information is obtained and thresholded 
(with 0) to obtain an estimate of the decoded descriptor. Finally, a 
CRC error detection technique is applied to assess if this estimate is 
reliable. 

6. PERFORMANCE EVALUATION 

The MDFC performance was studied in the context of an object 
recognition task, although the proposed solution may have other uses 
such as object tracking. In this Section, both the test conditions used 
and the experimental results obtained for bitrate compression and 
object recognition accuracy are presented. 

6.1 Test Conditions 
To evaluate the proposed MDFC solution, the Berkley Multiview 
Wireless (BMW) dataset [13] already used in the past to assess ob-
ject recognition accuracy under networks with severe bandwidth 
constraints has been selected. The BMW dataset contains 20 differ-
ent landmarks, each acquired from 16 different perspectives. For 
each perspective, 5 views are simultaneously acquired, taken with 5 
different cameras where one of the cameras is in a central position 
and the others are placed around the central camera equally spaced, 
in a cross spatial configuration. Keypoint detection has been perfor-
med using the fast Hessian technique of the SURF detector [5]. 
Then, the BRISK [7] feature extractor has been used, which creates 
bit-strings with 512 bits. The SURF keypoint detector software was 
OpenCV 2.4.10 and the BRISK extraction software is available in 
[19]. An offline stage was used to cluster a set of descriptors and 
obtain meaningful and representative centroids. A total of 12456 
images from the Paris [20], Oxford [21] and Stanford landmarks [22] 
images datasets, with a maximum of 300 features extracted from 
each image, were used to define 4096 centroids. Note that these 
datasets were not used in the evaluation of the proposed solution. 
   To perform object recognition, pair-wise matching between the 
decoded descriptors from the query images (all views) and the data-
base descriptors is first performed. Then, wrong matches between the 
query and the database descriptors are filtered using the well-known 
ratio test: all matches in which the distance ratio is greater than 0.5 
are rejected, which allows to obtain the best accuracy. The number of 
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matched descriptors (inliers) is taken as the relevancy score of the 
database image with respect to the query image. Also, when the 
query has multiple views from the same object, the number of inliers 
obtained for each database image (after matching and filtering) is 
added before ranking. 
   Since communication between the sensing nodes of the VSN can-
not occur, the proposed MDFC can only be evaluated using as 
benchmark feature codecs which exploit Inter-view correlation at the 
decoder side or Intra feature codecs. Thus, the MDFC performance is 
compared to a predictive feature codec (PFC) that exploits the statis-
tical correlation between each of the extracted descriptors and the 
corresponding centroid of the cluster to which it belongs, i.e. only 
Intra coding is performed. The encoder computes a descriptor residue 
which is the difference (XOR) between the descriptor to be coded 
and the corresponding centroid descriptor; this residue is after arith-
metic coded to obtain better compression performance. 
   The codecs performance has been assessed not only in terms of 
compression factor but also in terms of average precision (AP), a 
widely used metric to assess retrieval accuracy [23]. MAP is calcu-
lated by taking the mean of the average precision (AP), where AP is 
calculated for each query by averaging the precision at each point a 
correct image is retrieved. To asses the accuracy, the BMW dataset 
was divided into two sets – the query and the database which are 
completely independent: the query images correspond to perspecti-
ves 0, 3, 6, 9 and 12 and the database images are the remaining ones. 
In the results shown, the number of reference views used to decode 
the current view varies from 0 (Intra), 1, 4 and 79. When 1 and 4 
reference views are used, they have been acquired at the same time 
instant and correspond to views from the same perspective. Note that 
the first view is always coded as Intra. When more than 4 views are 
used, images acquired from different perspectives are exploited to 
achieve higher compression and object recognition accuracy, e.g. 
when 79 reference views are used, they correspond to all views from 
the 16 perspectives (1 landmark). 

6.2 Experimental Results 
The average bitrate savings results for all query images of the BMW 
dataset with respect to the uncompressed data rate are presented in 
Table I when the Centroid Based Strategy (CBS) and the Geometry 
Based Strategy (GBS) SI creation methods described in Section 4 are 
used; results are also shown when the LDPC and Turbo codes are 
used for Slepian-Wolf decoding. Note that the decoded descriptors 
are the same as the original descriptors and thus the retrieval perfor-
mance is the same for a fixed number of reference views (columns). 
An insight of the operation modes used by the MDFC to decode the 
descriptors is shown in Figure 2, i.e. the number of times that the 
Intra and Inter modes are selected when the number of reference 
views increases. In Figure 3, the rate-accuracy results are presented 
with the accuracy of the object recognition measured by means of the 
MAP and AP@L with L=[1,5,10,20] metrics; for each query, a rank 
of only L images in the database is obtained to compute the AP. To 
obtain these results, the LDPC code and the GBS SI creation techni-
que were employed and the number of coded views is increased to 
show the accuracy gains. From the results, the following conclusions 
can be made: 
• PFC versus MDFC: As shown in Table 1, when all cameras are 

independently encoded and decoded (Intra), PFC slightly outper-
forms the MDFC – LDPC performance just using the Intra mode 
and obtains 7.56% higher bitrate savings comparing to MDFC – 
Turbo. This can be justified by the gap that distributed coding 
schemes typically have with respect to predictive coding (although 
the MDFC – LDPC gap is rather small). Note that, when using 
more reference views, the PFC codec cannot be used since it is as-
sumed that cameras cannot communicate with each other.  

• MDFC – Turbo versus MDFC – LDPC: As expected, for all 
evaluated cases, the LDPC codec is more efficient (see Table 1) 

since the same behavior was observed for distributed video coding 
schemes [9]. Moreover the MDFC – LDPC codec is able to 
outperform the PFC codec just when two cameras are used, which 
shows that exploiting the Inter-view redundancy is rather benefi-
cial even only at the decoder side.  

• MDFC Intra-mode versus MDFC Inter-mode: As shown in 
Figure 2, when more reference views are used to generate the SI, 
the number of descriptors decoded using the proposed Inter-view 
approach increases. This is expected considering the bitrate sav-
ings results presented in Table 1. 

• MDFC – LDPC rate-accuracy: As shown, the MAP is below 
30% for 118 kbit/query (one view) and continuously increases 
when more views are used, up to 70% for 2.64 Mbit/query (25 
views); the same behavior is observed for the AP metrics – the 
number of views is shown at the top of the graph. Thus, it may be 
concluded that having multiple descriptors from different view-
points has a big impact in the object recognition accuracy. When 
the number of retrieved objects is L, the average precision increas-
es when compared with MAP, which means that the top ranking 
objects are quite often the same object as the query. 

Table I – PFC and MDFC average Bitrate Reduction [%]. 
 Intra CBS GBS 

Ref. Views 0 1 4 79 79 
PFC 23.97     
MDFC - Turbo 16.41 22.47 27.57 28.44 33.23 
MDFC - LDPC 23.04 28.05 32.45 33.23 37.36 

 
Figure 2 - Descriptors decoded as Inter and Intra [%]. 

 
Figure 3 – MDFC – LDPC rate-accuracy performance. 

7. CONCLUSIONS 
In this paper, a distributed source coding solution able to exploit the 
Inter-view redundancy in binary features is proposed. This solution is 
suitable for a multi-view image acquisition system typical of a visual 
sensor network. Significant bitrate compression savings were obtai-
ned by exploiting the Inter-view redundancy at the decoder side (up 
to 37.36%). Also the accuracy of the object recognition was improv-
ed from 30% to 70% when more cameras are used. Future work will 
consider the design of a distributed descriptor selection coding 
scheme able to avoid the transmission of features which do not con-
tribute to increase the accuracy of the visual analysis task. 
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