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ABSTRACT

This paper proposes an innovative method that slign
polyphonic audio recording of music to its corresgiog
symbolic score. In the first step, we perform orgstection
and then apply constant Q transform around eachtoAs
similarity matrix is computed by using a scoringdtion
which evaluates the similarity between notes in ringsic
score and onsets in the audio recording. At lagt, use
dynamic programming to extract the best alignmexth pn
the similarity matrix. We compared two onset deiestnd
two note matching methods. Our method is more ieffic
and has higher precision than the traditional cladrased
DTW method. Our algorithm achieved the best prenisi

Wen-Shan Liu Chi-Yao Weng
Institute for Information Department of Computer
Industry, Taiwan Science

wsliou@iii.org.tw National Pingtung University

Pingtung, Taiwan
cyweng@mi | . nptu. edu. tw

measure or passage on the musical score [6]. Mergov
alignment system provides the information of perfance
errors and temporal deviation of note events, stait be
used for music performance evaluation or music afiiic.

The standard approach to audio-to-score alignment
involves three steps: feature extraction, distaicglarity
computation, and alignment. Step 1 aims to extfemn
audio signal informative features that charactettieemusic
contents, like pitch, chord, or onset. In stepvg, need to
define a distance or similarity function to measihe
difference between features of audio recording thednote
events in the score. Step 3 employs an alignmeatrithm
to find the best match between the feature sequandehe
score. Note that the tempo of audio performance ey

which are 10% higher than the compared traditionalinstable and deviate from the tempo of its scoesidgs,

algorithm when the tolerance window is 50 ms.

Index Terms—Music synchronization, audio-to-score possibly

alignment
1. INTRODUCTION

The goal of audio-to-score alignment is to find apping

there may be minor inconsistence in the notes lmtwe
audio performance and score. For example, musician
loses notes inadvertently or add ornaments
intentionally. As a result, a good alignment algori should
take these issues into consideration. Dynamic pragring
based alignment, such as dynamic time warping (DToAf)
cope with tempo fluctuation of audio signals. Tliere,
DTW is extensively used in the audio-to-score atfignt

between an audio performance and its symbolic ralsicsystem.

score [1, 2]. In other words, the alignment anadytiee
content of input audio at some time point and maps a
corresponding time point on its score with simitausic
structure. In general, audio-to-score alignment dan
implemented as either a real-time or offline systémeal-
time system, also called score follower, can bel uselign
a musical score to a live performance and, furtban, take
part in musical interactions with human musiciangéal-
time in order
accompaniment [3] or automatic page turning [4]. ha
other hand, in an off-line scenario, there is nal-tene
constraint and the complete information of the gieaidio
signals can be used in the alignment process. fidrerahe
alignment performance of off-line cases is usu#létter
than that of real-time cases. The offline alignmsydtem
can be used to retrieve the best matching MIDI iflea
database for an audio query [5]. It would also wvallo
indexing timestamps of an audio according to thsirdd
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The problem of audio-to-score alignment was first
introduced in 1984 by R. B. Dannenberg [7] who présd
algorithms for following a monophonic soloist insaore
and synchronizing the accompaniment. Early audisetire
alignment techniques mostly dealt with monophomiores
since polyphonic music alignment was much hardehait
time. Most polyphonic audio-to-score alignment aitpons
adopt a similar procedure which converts a symbsdiare

to achieve goals such as automatimto audio, performs feature extraction on the ioafand

converted audio pieces, and then align two sequeente
features. Orio and Schwarz [8] use DTW to align
polyphonic audio file to another audio file that is
synthesized from a MIDI file. They use a measureda
peak structure distance, which is derived fromghectrum
of both audio. In contrast, Dannenberg and Hu [pb, 6
proposed a similar scheme, which computes a sirhple
dimensional pitch chroma as input feature and atigm
performance audio with the synthesized audio by DTW
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approach. These simple techniques give good results

polyphonic audio signal and do not require a tragrphase.
There are still other audio-to-score alignment eaysst

that employ probabilistic models for better perfamoe,

audio, and then pick local maxima from OSF as andet
our implementation, we tested two onset detectiethods.
First one is spectral flux proposed by S. Dixon][Bpectral
flux captures onsets with changes in the magnispéetrum

such as hidden Markov models (HMMs) and conditionabf short-time Fourier transform. The other oneasdd on a

random field (CRF) models. These models take intmant
the uncertainty of the matching
performance. In such systems,
represents the current position in the score. Blexi
transition probabilities can also permit possibteucture
changes. Viterbi algorithm is usually used to sedhe best
alignment path in these models. For example, C8it [

probabilistic model proposed by F. Eyben, et al].[12

to achieve betteincorporates a recurrent neural network with thecsal
the hidden variablmagnitude and its first time derivative as inpuatéees. It

shows good performance on all type of music categom
our implementation, the frame size is 25 ms anctyesize
is 5 ms. To pick reliable peaks in an OSF, we a&gpk
median filter as threshold to remove spurious peaks

presented a polyphonic score following system usinghen pick the maximum in a sliding window of 50 ms.

hierarchical HMM using previously learned pitch {@ates
for multiple fundamental frequency matching. CRFdeio
was first applied to the audio-to-score alignmeobfem by
Joder [10], which incorporates both frame-level
segment-level features, including chroma, onsettantpo
information. Joder proposed 3 different CRF models
different
complexity. The probabilistic models brought moffécent
and accurate alignment techniques,
favorably with DTW based methods.
The disadvantage of using synthesized audio (frd@lM
or music score) is that its music properties mjffer from
real-world signals. The input audio would not alwdave
the same timbre and harmonic property as the syiziin
audio music. On the other hand, probabilistic medeled a
time-consuming training phase to fine

anc

choices of tradeoff between accuracy anc
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Figure 1. Flowchart of the proposed audio-to-score
alignment algorithm

2.2. Constant Q transform

tune modelConstant Q transform has been used extensivelyusian

parameters. Instead, this paper proposes an ingbrovanalysis, where the “Q” means the "quality factevhich is

scheme which bypasses the process of music systhpdi
the training phase. It observes multiple pitchesund

the ratio of center-frequency to its bandwidth. rEfiere,
constant Q means that ratio is constant in allfeegy bins

onsets based on constant Q transform, and compate tof the spectrum. The transform mirrors the humaditacy

similarity with the notes in the score. Our methsdather
robust to variations in harmonic series and therfatence

system, where spectral resolution is better at ftowe
frequencies, and temporal resolution improves ahdn

of music accompaniments according to our experiaient frequencies [13]. The frequency scale of constant Q

results.

transform is logarithmic, so it is particularly fislein music

In the next section, we shall describe the proposegrocessing since musical transposition correspamd to

algorithm in more detail. Section 3 describes eafidun
criteria and experimental results of the propodgdrahm.
Finally, Section 4 gives conclusions and futurekyor

2. POLYPHONIC AUDIO-TO-SCORE ALGORITHM

This section introduces the proposed alignment atgth
which involves 4 steps (onset segmentation, cohsfan
transform, note matching, and dynamic programmi@ag),
shown in Figure 1. We shall introduce these stepsly-
one in the following sub-sections.

2.1. Onset detection

Onset detection is commonly used as a basic stepriber
music analysis tasks, such as beat tracking andicmu
transcription. The general procedure of onset tietecs to
compute an onset strength function (OSF) from tiut

translation of frequency bins. The constant Q fiamns of a
signalx(n) can be expressed as follows:

Ny ;
=2mjQn
Ck) = Nikz x(Mwy, (n)e N{c 2
n=1

where N, is the number of samples used to calculate
constant Q transform at the frequenfy The definition of

Ny is}’:—ZQ, wheref; is the sampling rate of the signdin).

wy,(n) is a window function with lengttv, . We use
Hamming window in our implementation.

For each onset, we take the frames immediatelyrbefo
and after the onset for constant Q transform. Wansh Q
factor in a way such that the pitch range from 2d5to

52050 Hz is divided into 116 bands, as there ifdQuency

bins in an octave and then each frequency bin tiijrec
corresponds to a musical note. After obtaining 2stant Q

2803



spectrums for the each onset, we can estimateititteep of  pitch and its harmonics, which cover from Al to A8.s

note concurrence from them as described next. the coefficient matrix of size is 888, where all columns
o are identical to each other. The columof H is the result
2.3. Smilarity measure of decomposition.

We build chord templates for each chord (i.e., siatéh
After obtaining the onsets, we have to determingciwh the same onset time) in the score. Chord templasea
note-on event triggers an onset according to tleetspm of  vector in which its index corresponds to a notetpin the
constant Q transform. We have developed two scoringhord. If there is a note with pitéhthe corresponding index
functions to evaluate the similarity of how theiation of  of the chord template t will be set to 1, and feolvise. We
spectrums near an onset is correlated with a not¢he define a scoring function to evaluate similaritytvaeen a
score. chord template t and an onset vector v by caladatheir

dot producf}2$¢; x v;.

2.3.1. Note matching method 1
As described in section 2.2, we can obtain 2 comspa 24 Dynamic programming
spectrums right before and after an onset. Assiunés the

absolute difference of these 2 magnitude spectmengcan According to the above scoring function, we canlduai

then define a vectdt as similarity matrixS(i,j), wherei is an onset index of the
) input audio ang is a chord index of the music score. Each
(k) :{dA(k)' if dA(k) > € ) cell in a matrix is the output of scoring functionle use
0,  otherwise dynamic programming (DP) to find the best path test the
overall maximum similarity. The recursive formulil@P is

wheree is a noise margin, which is set to 1/4 of the ager
of dA. We define that a pitch is matched if its frequehn

k is a local maximum in vectdr, otherwise it is unmatched. DGi—1,))
We can use a binary valgg, to indicate whether a pitch in DG, j) = max DG,j— 1) )
bin k is matched or not. That is, it is 1 if matched, Cor DGi—1,j—1) +5G,))

otherwise. Here we also take into account the hamtno

series of a note by introducing an overtone veg@tequal to  The alignment path is a sequence of adjacent aeliere
[0, 12, 19, 24, 28, 31], which are the frequenay bidex  gach cell indicates a correspondence between nset @n
differences between a note and its overtones oftaohQ 5 ,4io performance and a note-on event in the macice.
spectrum. Elements of the vectdrcorrespond to the 1st to afier computing the maximum similarity, we can derithe
6th harmonic partials of a note since we divideoatave pagt alignment path by back tracking the path wita

into 12 frequency bins. For example, if a note agsitch  highest accumulated value in matbix
value of 440Hz, then 37th bin of the spectrum ssfitst

harmonic partial (i.e., fundamental frequency),h58in is 3. EXPERIMENTS
its 2nd harmonic partial, 66th bin is its 3rd hanitgpartial,

and so on. We use a scoring function to evaluatewell 8 31 pataset and evaluation metrics
note is matched, as shown next:

as follows:

. The dataset used to evaluate the audio-to-scoganaént

1 task contains 56 recordings of human played perdoca.

Si= Z]‘p"”’@ “) Each recording has a corresponding MIDI represiemtaif
=t the score. Recordings are in 44.1 KHz 16 bit wawnf.
The total number of notes is slightly more than000, and
1. g o ) ] he total duration is 54 minutes. The dataset @ostbnvo
and the ternc]} is the weight of itg-th harmonic partial. If g psets. Subset 1 [14] has 46 recordings extrdooed 4
there is more than one note with the same onset, time  distinct pieces of classic music, which are perfednin a

wherei is the frequency bin corresponding to a note pitc

just sum output of their scoring functions. monophonic or slightly polyphonic manner. Subsdil2]
consists of 10 human played J.S. Bach four-partatés,
2.3.2. Note matching method 2 with 30-sec audio files sampled from real music

We can further improve the note matching algoritbgn  performances by a quartet of instruments: violiyinet,
inducing non-negative matrix factorization (NMF)3[1to  tenor saxophone and bassoon.

decompose harmonics of notes. We extend the vel&or Evaluation metrics is based on the proportion of
into a 11688 matrixV by replicatingdA 88 times. We use correctly matched notes in the score. A note igl $aibe
NMF to factorizeV into a nonnegative matrixV and a correctly matched if its estimated onset does retiale
nonnegative matri such tha¥ ~ WH. W is the feature from the real one by more than a tolerance windoav, 50
matrix of which dim is 11688 where each column is a note MS)- There are 2 types of figures of merit, piesewand
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total precision. Piecewise precision is based enatverage method as described in section 3.2, and the totaigion

of individual precision of each recording. Totalegpision

79.35% and the piecewise precision 73.53% of “NN£XIM

counts the total matched pairs to derive the olerabre 10% higher than the baseline in the tolerarindaw 50

proportion.

3.2. Performance evaluation

We shall compare the proposed algorithm with some

methods of the audio-to-score alignment. The resaoft
performance evaluation are listed in Figure 2. €raee total

ms. As a whole, the algorithm “NN+NM2" achieves thest
result in our audio-to-score alignment experiments.

4. CONCLUSIONS AND FUTURE WORK

We have proposed an algorithm that aligns a polggho

4 algorithms: “RB” is derived from R. B. Dannenbsrg audio recording of music to its corresponding sylicbo
algorithm [5], which uses chroma feature and DTWscore. The algorithm involves 4 steps, includingseain

alignment. This algorithm is chosen as a baselmeur
experiment. The remaining three are based on thgoped
methods. “SF+NM1” is an implementation, which eaysl
spectral flux and note matching method 1. “NN+NM4&”
based on the neural-network onset detector andntte

detection, constant Q transform around onsets,|agityi
between onsets in audio and note-on in score, gndndic
programing to find the optimum mapping path. Sitice
proposed method does not rely on timber featuresllof
frames for alignment, it is more efficient in ternu

matching method 1. “NN+NM2" is based on the neural-computation. It is also more reliable when the tiesb(or

network onset detector and the note matching meghdd
this table, there are 4 different tolerance windotes
evaluate the performance, which are describeddrséttion
3.1.

| Algomtho | 500s (%) |100us (%) [250ms (5 500ms ()| |
RB 9365

6655 8499 96.93

Precision (%)

SF+NM1 6240 7573

NN+NM1

04.89

96,76

NN4NM2 7935 8934 9550 9793

60 - - - : J
0 100 200 300 400 500
Tolerance window size (ms)

(a) Total precision vs. tolerance window size

8

8

8

RB

f3.14 7766 86.74 9148

Precision (%)
3

SF+NM1 4523 6282 80.01 8945
NN+NMI 68,84 8133 9243 96.08

NN+NM2 73353 8758 04.88 9738

2
2

l SF+NM1

g

a0l 1 !
0 100 200 300 400 500
Tolerance window size (ms)

(b) Piecewise precision vs. tolerance window size

the instruments) in audio are different from thepecified
in the music score. We compared two onset detectods
two note matching methods in the experiments. Oethod

is more efficient and has higher precision thanliti@nal
chroma-based DTW method. When the tolerance wiridow
50 ms, the best total precision and the piece-piseision
are 79.35% and 73.53%, respectively, which are hifiter
than the compared baseline algorithm.

Although the proposed method performs well in the
experiments, it still has room for further improvemh
Future work of this research will be focused on riaying
the alignment algorithm in various aspects. For timeg,
the scoring function we used is straightforward thaoes
not consider the complicated case where differestesn
coincidence. Moreover, we shall use machine legrim
analyze the spectral pattern of constant Q transfororder
to come up with a better similarity matrix. Finallye shall
develop a real-time score following system of pblypic
music performances to demonstrate the feasibilftythe
proposed algorithm.

Figure 2. Experimental results: The algorithm RB is a used

as a baseline. The remains are our proposed methods

From the Figure 2, it is obvious that “NN+NM2” can

achieve the best performance in both total pretisiad
piecewise precision in all tolerance windows. Besjdthe
precision of “SF+NM1” is lower than baseline. This
because the spectral flux does not capture well sufets.

When we change to the onset detector based onlneura

network, which learned all types of music onsetesashe
performance of “NN+NM1" is obviously
However, the total precision of “NN+NML1" is stilbwer
than the baseline around the window size 100 mshasn
in  Figure 2(a). Therefore, we improved the notgahing

improved.
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