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ABSTRACT

Automatic speech recognition (ASR) has become a widespread and
convenient mode of human-machine interaction, but it is still not suf-
ficiently reliable when used under highly noisy or reverberant con-
ditions. One option for achieving far greater robustness is to include
another modality that is unaffected by acoustic noise, such as video
information. Currently the most successful approaches for such au-
diovisual ASR systems, coupled hidden Markov models (HMMs)
and turbo decoding, both allow for slight asynchrony between au-
dio and video features, and significantly improve recognition rates
in this way. However, both typically still neglect residual errors in
the estimation of audio features, so-called observation uncertainties.
This paper compares two strategies for adding these observation un-
certainties into the decoder, and shows that significant recognition
rate improvements are achievable for both coupled HMMs and turbo
decoding.

Index Terms— Audiovisual speech recognition, uncertainty-of-
observation techniques, discriminative transformation.

1. INTRODUCTION

Human-machine interaction systems have achieved a considerable
level of sophistication over the past decade. However, the reliable
operation of such systems in practical scenarios has been a chal-
lenge. Systems routinely struggle with the variability of human ex-
pression, both visually and acoustically, and the ever-present effects
of varying environments and noise. Machines that jointly consider
visual and acoustic cues tend to achieve higher levels of robustness,
because visual cues are complementary to acoustic ones, and fea-
tures extracted from visual and acoustic information correlate with
each other. It is thereby possible to recover information that is oth-
erwise lost in each individual modality due to noise or occlusion.
However, visual and acoustic features also provide information that
is unique to each modality (through place and manner of articulation
for example) so that degradations due to the variability of human
expression itself can be curbed. Furthermore, it is well known that
humans gain a benefit from audiovisual integration. Lip-reading is
used by hearing impaired listeners, for example, and visual informa-
tion may even override acoustic cues as demonstrated by the experi-
ments by McGurk and MacDonald [2]. Joint audiovisual processing
has, therefore, been successfully used in a number of applications
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such as automatic emotion recognition [3], speaker diarization [4],
voice conversion [5], speech enhancement [6], speaker tracking [7],
and the recognition of whispered speech [8].

Early successful approaches for joint audiovisual decoding in
automatic speech recognition (ASR) were conceived, amongst oth-
ers, by Neti et al. [9], Nefian et al. [10], Zhang et al. [11], and Kratt
et al. [12]. The goal is generally to combine an acoustic recognition
engine with an automatic lip-reading mechanism. A fundamental
problem in the integration of corresponding visual and acoustic cues
is that the two modalities are not perfectly synchronous, but exhibit
time offsets caused by preparatory articulator/lip movements. These
movements occur in anticipation of future phonemes, similarly to
corresponding co-articulation effects in the acoustic signal. The
two mechanisms that are currently considered to be most success-
ful in integrating such visual and acoustic features are coupled hid-
den Markov models (CHMMs) [13] and turbo decoding (TD) [14].
CHMMs are formally different from regular HMMs in that internal
states are addressed with a two-dimensional index instead of a one-
dimensional index (see Fig. 1). One dimension of the index refers to
the corresponding state in the audio-only stream and the other index
refers to the corresponding state in the video-only stream. CHMMs
are naturally able to account for asynchronicities between the two
streams [10] and, thereby, enable the processing of audiovisual data.

An alternative to CHMMs was recently published by Receveur,
Scheler, and Fingscheidt [14]. They recognized that the so-called
turbo techniques developed in the context of error correcting chan-
nel codes [15] can also be applied to the information fusion problem
in multimodal recognition tasks. They reported that their general-
ized turbo ASR approach outperformed conventional CHMMs with
a significant reductions in word error rate [14].

Lastly, all types of ASR systems suffer from degradations in
noisy and/or reverberant environments. The situation can be signifi-
cantly improved, however, if not only a generic noise-reduction/de-
reverberation algorithm is applied, but also information about the re-
liability of the resulting feature vector is incorporated into the recog-
nition process. Conventional techniques include uncertainty decod-
ing (UD) and modified imputation (MI). Successful implementations
of such uncertain data techniques for audiovisual speech recognition
(AVSR) were proposed in [13] and [16].

In this paper we assess the use of a new noise-adaptive linear
discriminant analysis method (NALDA) to fuse reliability informa-
tion into the recognition process. NALDA was introduced in [17] in
the context of audio-only ASR. Classical linear discriminant anal-
ysis (LDA) projects multidimensional data onto its most discrimi-
native direction. In NALDA this direction is adaptively optimized
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Fig. 1: Illustration of a CHMM with N ×M coupled states. The
marginal audio model has N audio states qa and the marginal video
model has M video states qv . Entry and exit of a CHMM is limited
to corner states (indicated by tiny black circles).

with respect to the estimated feature uncertainties. We extend the
methodology to AVSR systems and show that NALDA delivers word
recognition rates that are superior to conventional techniques.

2. AUDIOVISUAL SPEECH RECOGNITION

Audiovisual data differs from standard single-modality data with re-
spect to its inherent asynchronicities: since speakers tend to bring
articulators into position before phonation occurs, e.g. at the begin-
ning of an utterance, the visual modality information can precede
that of the acoustic modality by up to 120 ms [18]. Different model
topologies have been proposed to deal with this issue. Ideas range
from simply applying a standard HMM to concatenated features, the
so-called feature fusion approach [9], to a wide range of so-called
decision fusion approaches. Decision fusion can occur at different
stages of the recognition process. Early integration fuses the infor-
mation already at the state level. Late integration may go as far as
recognizing audio and video data separately and then fusing deci-
sions at the sentence-level [10].

In this paper, we consider two methods of classifier integration.
Both allow for a certain degree of natural, asynchronous behavior1,
while at the same time also providing means to explicitly enforce
some constraints on synchronicity. The first of these, the CHMM,
is known to be superior to feature fusion as well as a wide range of
other conventional strategies [10]. The other, more recently devel-
oped approach uses turbo decoding to integrate classifier informa-
tion with provisions for modeling asynchronicities. Turbo decoding
is shown to deliver a performance superior to CHMMs in [19]. We
extended both models to incorporate the handling of observation un-
certainties, as described in detail below.

2.1. Coupled HMM decoding

In a coupled HMM (CHMM) the joint state transition probability is
modeled as a linear combination of marginal transition probabilities
as illustrated in Fig. 1. An audio stream weight λC is used to capture
the interactions among audio oa and video observations ov and their

1Given that the model topology is chosen appropriately.
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Fig. 2: Turbo decoding (TD) for AVSR. The left column comprises
an FBA-based audio-only ASR system. For TD a second modal-
ity (video) is added and extrinsic probabilities γ̇a and γ̇v are ex-
changed between decoders. In the first TD iteration a flat prior
ga(qa) = 1, ∀qa is used for the audio state posterior calculation.
After a predefined number of iterations a best path search through
the audio posteriors γ̃a reveals the final best word sequence w∗.

respective individual observation likelihoods ba and bv . For the joint
audiovisual state likelihood we obtain

p(oa, ov|qa, qv) = ba(oa|qa)λC · bv(ov|qv)1−λC . (1)

For our experiments we used a token passing decoder to find the best
word sequence w∗ as the Viterbi path through a network of CHMM
word models.

2.2. Turbo decoding

Turbo decoding [15] is an information fusion technique, which orig-
inated from a breakthrough in digital communication applications.
More recently the turbo principle emerged as an alternative decod-
ing scheme in multimodal speech recognition [20, 14] and proved to
be useful for other applications such as blind speech separation [21]
and speech enhancement [22].

TD is based on the iterative exchange of soft information, de-
duced from state posteriors, between different decoders. This extra
information, ga and gv in Fig. 2, is used like a prior to modify the ob-
servation likelihoods ba and bv in the forward-backward algorithm
(FBA). The modified audio and video likelihoods become

b̃a(oa|qa) = ba(oa|qa) · ga(qa)λT λP , (2)

b̃v(ov|qv) = bv(ov|qv) · gv(qv)(1−λT )λP , (3)

in which λT acts like an audio stream weight and the constant λP
balances the likelihood and prior probability. From the FBA, we ob-
tain new state posteriors γ̃, which subsume the likelihood, the prior
probability and the extrinsic probability [14]. To find the extrinsic
probability γ̇(qt) for state q and frame t, we have to remove all ex-
cess information via

γ̇(qt) ∝
γ̃(qt)

b(ot|qt) · g(qt)
. (4)

The final step of each such half-iteration is to map the extrinsic prob-
abilities to the state space of the respective other decoder. This is
done by a linear transformation.

ga = Tva γ̇v audio← video (5)
gv = Tav γ̇a video← audio (6)

The process of modified FBA followed by the deduction of extrinsic
probabilities and their transfer to the corresponding state space is
iterated for the audio and the video model a few, e.g. 4, times.
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Despite objections against the applicability of plain forward-
backward inference in loopy graphical models [23], we have experi-
enced no convergence problems in our experiments.

3. USING MISSING AND UNCERTAIN DATA IN AVSR

When attempting ASR within natural settings, such as a home or
office environment, the system is frequently confronted with signif-
icant levels of additive noise. The detrimental effect of noise on the
recognition process can be substantially reduced with proper pre-
processing of the recorded input signal [24]. The implicit noise
power estimation of any type of noise reduction mechanism serves
two purposes: (1) with knowledge of the noise power it becomes
possible to (optimally) filter the incoming distorted speech to en-
hance the signal components of interest [1], and (2) the estimated
noise power may serve as a gauge for the reliability level of each
component [25]. High levels of noise would render a particular com-
ponent less reliable. Low levels of noise would sway the recognition
mechanism to place more confidence into any estimate derived from
the associated speech component. Fusing information about miss-
ing and uncertain data into an ASR process typically requires three
technical steps:

1. The execution of a speech enhancement algorithm that de-
livers: (a) an estimate of the underlying noise power at each
point of a time-frequency decomposition of the incoming sig-
nal, and (b) an estimate of the underlying clean speech power
at each time-frequency point.

2. A transformation of the estimated clean spectra and their as-
sociated noise powers into the domain of the recognition fea-
tures, which includes the estimated feature vectors and their
associated uncertainty measures.

3. Using the feature vectors and their uncertainties in a statis-
tical recognition engine to decode the word sequence of the
targeted underlying speech signal.

The implementation details of each of the three steps within our pro-
posed method are described in the following three subsections.

3.1. Signal enhancement and uncertainty estimation

For the preprocessing of the signal we generally followed the rec-
ommendation ETSI ES 202 050 for an advanced front-end feature
extraction algorithm after the European Telecommunications Stan-
dards Institute [26]. Our experimental data consisted of two-channel
signals sampled at 16 kHz. We applied a simple delay-and-sum and
a simple null-steering beamformer to derive an initial estimate of
the targeted speech signal x̂in[n] and an initial estimate of the noise
signal v̂in[n] [16]. Both estimates were converted into the STFT do-
main with a 400-sample Hamming window, a frame overlap of 240
samples, and an FFT length of 512 samples [1]. We use X̂in(k, t)

to denote the STFT of the initial signal estimate and V̂in(k, t) for
the STFT of the initial noise estimate. Parameter k represents the
frequency index and t denotes the time frame index.

The STFT X̂in(k, t) was subjected to a speech enhancement al-
gorithm with Wiener gain, the decision directed approach for the
estimation of the a-priori SNR ξ(k, t) [1], and an improved min-
ima controlled recursive averaging (IMCRA) for estimating the
noise power N(k, t) [27]. The estimated noise power N(k, t) was
weighted with gain-factor ξ(k, t)/(1 + ξ(k, t)) to arrive at an esti-
mate of the spectral uncertainties Σ̂N (k, t) (see Nesta et al. [28]).

3.2. Uncertainty propagation

The enhanced signal spectral estimates X̂(k, t) and the associ-
ated spectral uncertainties Σ̂N (k, t) were converted into the 13-
dimensional MFCC domain after Astudillo et al. [29] via uncer-
tainty propagation. Cepstral mean subtraction is applied [24]. We
augmented our MFCC vector with the usual ∆ and ∆∆ coefficients
(see [24] for example). The associated ∆ and ∆∆ uncertainties are
augmented in the uncertainty vector accordingly. As a result we ob-
tain a 39-dimensional audio recognition feature estimate oa(t) and
an associated 39-dimensional feature uncertainties vector Σ̂oa(t) for
each signal frame.

3.3. Uncertainty-based decoding

In conventional ASR systems, the observation likelihoods ba(oa|qa)
and bv(ov|qv) are typically computed as Gaussian mixture models

bqs(os) = p(os|qs)
M∑
m=1

Wqs,m ·N (os;µqs,m,Σqs,m) , (7)

where Wqs,m, µqs,m and Σqs,m are the parameters of the mth

Gaussian mixture component of state q in stream s (s ∈ {a, v}).
Each Gaussian component density would be evaluated via

N (os;µqs,m,Σqs,m) = 1√
(2π)D|Σqs,m|

· . . .

exp(− 1
2

(oa − µqs,m)T Σ−1
qs,m (x− µqs,m)). (8)

We refer to models in which off-diagonal elements of covariance ma-
trix Σqs,m are forced to zero as Gaussian-Density/Diagonal (GDD)
models. Models with fully populated covariance matrices are re-
ferred to as Gaussian-Density/Full (GDF) models.

In order to account for the possibly time-varying reliability of
the audio stream, one may replace observation likelihoods of audio-
streams in audio-only, coupled-HMM, or turbo decoders with like-
lihoods derived from uncertainty-of-observation techniques. These
utilize estimates of the observation uncertainty Σ̂oa(t) at each time
frame. In uncertainty decoding (UD) [30], for example, the Gaussian
component densities are updated with a time-dependent “correction”
in covariance, i.e.

Σ′qa,m = Σqa,m + Σ̂oa(t). (9)

Thus, the observation uncertainty is added to the covariance of each
state output probability distribution. Uncertainty Decoding (denoted
by GDU in the following tables) was used successfully for audio-
visual speech recognition in [31]. In conjunction with uncertainty
propagation techniques and stream weight optimization, however,
the respective performance gains of UD become small.

In contrast to uncertainty decoding, noise-adaptive LDA trans-
forms not only the covariance matrices of the Gaussian component
models, but also the mean vectors. For this purpose, it uses the ob-
servation uncertainties Σ̂oa(t) to determine the most discriminative
feature transform matrix WNALDA at each time frame t, as de-
scribed in [17]. Once the input feature vectors have been mapped
to the most discriminative D’-dimensional subspace by õa(t) =
WNALDA(t)oa(t), the HMM output distributions are transformed
for each state qa by

µ̃qa(t) = WNALDA(t)µqa . (10)

Likewise, each covariance matrix is updated by

Σ̃qa(t) = WNALDA(t)ΣqaW
>
NALDA(t). (11)
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Keyword Accuracies (%) with Oracle Uncertainties Keyword Accuracies (%) with Estimated Uncertainties
SNR -6 dB -3 dB 0 dB 3 dB 6 dB 9 dB avg. -6 dB -3 dB 0 dB 3 dB 6 dB 9 dB avg.

Video 72.20 72.20 72.20 72.20 72.20 72.20 72.20 72.20 72.20 72.20 72.20 72.20 72.20 72.20
Audio GDF 72.30 78.07 81.28 84.82 86.50 89.32 82.05 65.09 75.04 80.83 86.73 90.34 92.54 81.76
Audio GDD 72.11 77.00 81.91 84.58 87.21 89.59 82.06 71.90 79.05 82.56 87.75 91.64 91.60 84.08
Audio GDU 76.30 78.83 83.79 84.47 86.88 87.70 83.00 72.99 77.57 81.60 88.73 91.49 91.74 84.02
Audio GDN 82.72 86.81 88.49 90.71 92.17 92.44 88.89 74.00 78.94 85.19 90.93 92.40 93.30 85.79
CHMM GDF 82.52 85.14 86.58 88.32 89.88 90.33 87.13 76.67 82.56 87.30 89.74 92.37 93.88 87.09
CHMM GDD 82.78 85.93 87.95 89.86 90.96 92.32 88.30 84.72 85.81 88.68 90.47 91.22 92.09 88.83
CHMM GDU 82.39 84.40 85.29 85.85 87.85 88.08 85.64 83.63 84.59 87.77 88.97 91.18 90.64 87.80
CHMM GDN 87.32 89.23 91.28 92.56 93.71 93.86 91.33 84.13 87.59 90.28 92.40 93.36 93.43 90.20
Turbo GDF 84.49 86.92 88.17 89.31 91.08 92.04 88.67 81.79 86.41 90.11 91.53 93.98 95.32 89.86
Turbo GDD 84.46 88.06 89.42 90.92 92.58 93.50 89.82 85.75 88.58 90.45 92.16 93.68 93.52 90.69
Turbo GDU 88.45 89.08 90.54 91.33 92.79 92.13 90.72 84.34 87.57 89.67 91.48 93.60 92.71 89.89
Turbo GDN 90.03 92.34 93.77 94.76 94.97 95.66 93.59 87.21 89.48 92.08 93.09 95.26 95.12 92.04

Table 2: Keyword accuracies from our experiments with oracle and estimated uncertainties. Best results are marked in bold.

With these updated parameters and features, and with the re-
duced dimension D′, the audio observation densities are evaluated
according to (7). We use GDN to refer to a system with this type of
NALDA-based uncertainty evaluation.

From our video data we extracted 31-dimensional LDA-
transformed DCT coefficients of the mouth region as described in
[6]. The likelihood computation of the video features involved stan-
dard diagonal Gaussian mixture models without the inclusion of any
observation uncertainties.

4. EXPERIMENTAL SETUP AND RESULTS

For our experimental evaluation we used audio data from the
first CHiME challenge [32] in combination with matching video
data from the GRiD corpus [33]. The recordings consist of
1000 sentences spoken by 33 talkers each. All utterances in-
clude the annunciation of a letter (A. . .Z, excluding W) and a digit
(0. . .9). Audio and video files are not start/endpoint-aligned be-
tween the CHiME and the GRiD corpus. We therefore performed
a start/end-point matching via the word alignment files provided on
http://spandh.dcs.shef.ac.uk/gridcorpus/.

The entire set of training data was used in the initial model train-
ing. Subsequently, development data of the first five speakers was
used to adjust all free parameters, i.e. the audio stream weights for
the CHMM and the TD decoder. Table 1 shows the corresponding
values that we obtained for the four different types of decoders. We
set λP = 0.1 for all TD experiments and D′ = 37 for GDN.

The experimental results are shown in Table 2. We measured
the success of each of the considered recognition schemes via the
keyword accuracy, i.e. the percentage of correctly identified letters
and digits. For the oracle uncertainty results on the left-hand side
of Table 2, the uncertainties Σ̂oa(i) are given by the “true” squared
error between the features of the respective clean data and the pro-
cessed features. The right-hand side shows the keyword accuracies
for estimated uncertainties, computed after Sections 3.1 and 3.2.

All four previously introduced likelihood functions were com-
pared and there are three different decoding mechanisms at play:
Standard, single-modality decoders are used to generate the audio-
only and video-only results, and coupled HMM and turbo decoding
were used to obtain the audiovisual results.

In general, the performance difference for estimated and oracle
uncertainties is quite small for SNRs ≥ 0 dB, but the results deviate

Oracle uncertainties
XXXXXXXXRecognizer

pdf GDF GDD GDU GDN

CHMM (λC ) 0.8 0.8 0.9 0.9
TD (λT ) 0.7 0.7 0.8 0.8

Estimated uncertainties
XXXXXXXXRecognizer

pdf GDF GDD GDU GDN

CHMM (λC ) 0.8 0.7 0.7 0.8
TD (λT ) 0.8 0.6 0.6 0.7

Table 1: Stream weights λC and λT for all tested combinations of
the uncertainty estimators, recognition types and pdf types.

more when the SNR is negative. In nearly all SNR conditions,
the best performance is obtained with turbo decoding and NALDA-
based uncertainty evaluation.

5. CONCLUSIONS

We have considered the use of observation uncertainties in audiovi-
sual speech recognition, using coupled HMMs and turbo decoding.
As already noted by [31], in coupled HMM decoding, stream weight
adaptation and uncertainty compensation by UD both provide sig-
nificant advantages in isolation, but using uncertainty compensation
in addition to optimized stream weighting provides only small bene-
fits. This finding was replicated in our experiments. However, noise
adaptive LDA [17], another, more recent uncertainty-of-observation
technique, has proven to be of significant value in this context.

Additionally, we have incorporated uncertainty-of-observation-
techniques into turbo decoding, an approach to audiovisual integra-
tion that was recently introduced in [14]. Here, again, uncertainty
decoding was only of rather small benefit when optimized stream
weights were used, whereas noise-adaptive LDA has shown large
benefits for optimal oracle stream weights, and has been valuable
with estimated uncertainties as well.

In the presented approach, fixed stream weights were used in all
experiments. Optimization of stream weights on a frame-by-frame
basis has proven its merit for coupled-HMM systems in [34]. It
will be interesting to extend this technique to the presented turbo-
decoding system, adapting the stream weight according to estimated
SNR, observation uncertainty, and model-based reliability measures
like dispersion and entropy, in order to also consider the time-
varying utility of video information in the process.
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