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ABSTRACT

Facial age estimation is challenging due to complex dynam-
ics in aging process, which render metric regression meth-
ods unfavorable. Rankers show better performance by ex-
ploiting the ordinal nature of ages. The difficulty of design-
ing a ranker is that each binary classifier of a ranker has to
be trained using highly unbalanced positive and negative da-
ta. This paper proposes a partial least squares based ranker
(PLS-Ranker), which fully maintains the advantages of PLS
and greatly boosts its performance on the ordinal problem. In
PLS-Ranker, an adaptive threshold learning strategy is pro-
posed to boost each of the binary classifiers learned from
highly unbalanced data. Previous ranking approaches such as
CS-OHRank suffer from heavy computations because dozens
of binary classifiers are trained separately. However, in PLS-
Ranker, they are jointly learned. Additionally, PLS-Ranker
simultaneously reduces feature dimensions and ranks in high
speed even for high-dimensional features. Experimental re-
sults on the age estimation problem show that PLS-Ranker
outperforms the state-of-the-art methods in terms of both ac-
curacy and speed. PLS-Ranker also achieves state-of-the-art
performance on the multi-source cross-race-and-gender age
estimation problem, which further demonstrates its robust-
ness.

Index Terms— Age estimation, rank, partial least squares,
adaptive threshold learning, speed

1. INTRODUCTION

Age estimation is useful for friendly and secure human-
robot/computer interactions, age-based access control, family
photo management, etc [1–3]. Multi-class classifiers take
different age labels as totally independent. They often show
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poor performance due to ignoring the relative ordinal re-
lation between labels [4]. Metric regression methods, e.g.
warped gaussian process (WGP) and support vector regres-
sion (SVR), use real-valued labels [2, 5]. Metric regression
methods also show unfavorable performance. The reasons
may be two folds: 1) There exist complex dynamics influ-
enced by many factors in aging. Although briefly speaking,
aging in face is bone growth during childhood whereas skin
related deformation during adulthood [4]; 2) Metric distance
information carried by age is inexact [4, 5]. For instance,
we can not say a 25-year-old adult is 2.5 times older than a
10-year-old child.

Relation to prior work. 1) Partial least squares. Al-
though partial least squares (PLS) [6–8] has achieved success
in chemometrics, it has been catching attention in computer
vision area only in recent years [9–12]. The successful ap-
plications include human detection [9], face recognition [12]
and pose estimation [11]. However, to some extent, PLS also
suffers from the problems that the other metric regression
methods encounter when being applied to the age estimation
problem. 2) Ranking approaches. Based on the fact that age
has a nature order, Chang et al. [4,13] proposed to use ranking
methods for age estimation. Ranking approaches show ad-
vantages over metric regression methods such as WGP, SVR
etc [4]. Rankers rank by ordinal comparisons (binary classi-
fications) [5]. Among these ranking approaches [4, 13–15],
cost-sensitive ordinal hyperplane rank (CS-OHRank) gets the
minimum error [4]. The key to the accuracy of CS-OHRank
is its basic binary classifier, cost-sensitive support vector
machine (CS-SVM). CS-SVM is robust to the imbalance
problem of its positive and negative training data (which
will be described in detail in Sect. 2.2) using cost-sensitive
strategy. However, CS-OHRank is time-consuming and of
high complexity. A reason is that during the training process
of CS-OHRank, dozens of rbf-kernel CS-SVMs have to be
trained separately.

Since PLS has many excellent characteristics, our moti-
vation is to transform the advanced multivariate data analysis
(MVA) tool into a ranker to boost the performance in terms of
accuracy, speed and robustness, on the age estimation prob-
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(a)Flow chart of age estimation using PLS-Ranker
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Fig. 1. Partial least squares based ranker. Best viewed in color.

lem. We design a PLS based ranker (PLS-Ranker), in which
all binary classifiers are jointly learned. We propose an adap-
tive threshold learning strategy to make each basic binary
classifier of PLS-Ranker robust to the imbalance problem of
its positive and negative training data.

2. PARTIAL LEAST SQUARES BASED RANKER

2.1. Partial least squares
A brief mathematical description of PLS is provided below.
Please refer to [6–8,11,16] for additional details regarding ad-
vantages of PLS over multiple linear regression (MLR), prin-
cipal components regression (PCR) and canonical correlation
analysis (CCA).

The regressor (input) matrix X (n×N) and response (out-
put) matrix Y (n×M) contain n observations of N indepen-
dent variables and M dependent variables, respectively. PLS
decomposes the zero-mean matrix X and zero-mean matrix
Y into:

X = TPT +E

Y = UQT + F
(1)

where T and U are n × p matrices of the p extracted scores
(a.k.a. components, latent variables or factors). P (N × p)
and Q (M × p) are matrices of loadings. E and F are the
residuals. The PLS method, whose classical form is based on
the nonlinear iterative partial least squares (NIPALS) [6, 7],
finds weights vector w and c such that:

[cov(t,u)]2 = [cov(Xw,Yc)]2

= max|r|=|s|=1[cov(Xr,Ys)]2
(2)

where cov(t,u) = tTu/n denotes the covariance between
t and u. Most PLS models assume that there exists a linear
inner relation between the score vectors t and u. Finally:

Y = XB+ F∗ (3)

where B = XTU(TTXXTU)−1TTY is the regression co-
efficient matrix and F∗ is the matrix of residuals [16]. For
prediction, just multiply the feature block of test set Xtest

with B.
The complexity of NIPALS is O(n2) [11], which is very

fast in training. When using the kernel extension of NIPALS,
kernel PLS (KPLS) [16], the complexity increases to O(n2N)
[11], where N is the feature dimension. When N is big,
which is often the case in applications, training KPLS model
is expensive compared with training linear PLS model.

2.2. Partial least squares based ranker
The coding strategy for jointly learning. It is the first step
of training the PLS-Ranker model, which is illustrated in Fig.
1(a) using blue lines. Given n training samples, the feature
matrix X (n × N ) and the column vector y (n × 1) contain
feature vectors and scalar age values of the n samples. Sup-
pose the age range is 1 ∼Ma.

We encode each scalar age yi (i = 1, 2, · · · , n) into a
1×(Ma−1) binary row vector A(i, :) and form an n× (Ma−
1) indicator matrix A:

Ai,j =

{
1, if j < yi

0, if j > yi
(4)

Elements in the j-th column of A indicate whether the n faces
are older than j years or not. We propose the coding strategy
to jointly learn all associated binary classifiers.

After the coding step, we use the feature matrix X and
indicator matrix A to train a linear PLS model and get the
regression coefficient matrix Bpls. Bpls is the first parameter
of the PLS-Ranker model.

The key to improve ranking accuracy. It is an effective
and popular framework to reduce ranking to associated binary
classifications [5]. Consider that we want to know how old a
face is. An associated question would be:“ Is the face older
than j?”. For a fixed j, such a question is exactly a bina-
ry classification problem, and the rank can be determined by
asking multiple questions for j = 1, 2, · · · , (Ma − 1) [4, 5].

Under the reduction framework, the key to improve ordi-
nal ranking is to improve binary classifications [5]. However,
the positive and negative training samples for each of the bina-
ry classifiers are highly unbalanced even though the age label
(rank) distribution on the database is uniform. For example,
suppose we have an aging database containing same number
of faces for each age. Suppose the age range is 1∼77. For the
5-th binary classification problem: “Is the face older than 5?”,
the number of positive (older than 5) and negative (not older
than 5) training samples are of big difference.

Adaptive threshold learning. PLS-Ranker is also under
the reduction framework. In PLS-Ranker, the trained linear
PLS model will map the feature vector of a test sample to a
real-valued indicator vector. Thus, sole linear PLS can not
serve as the multiple binary classifiers without thresholding
the real values to binary values.

The unbalanced positive and negative training samples
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may shift the optimal thresholds away from 0.5.1 We propose
an adaptive strategy to learn thresholds from the unbalanced
training data for the Ma− 1 binary classifiers. It is illustrated
in Fig. 1(a) using green lines. We apply the trained linear PLS
model back to the feature matrix X of training set, and get a
prediction of indicator matrix A:

Â = XBpls. (5)

where Â is a real-valued matrix. Thresholds are searched in
a small range S around 0.5 and determined by the criterion
of minimizing the error rate on the training set. For the j-th
(j = 1, 2, · · ·,Ma − 1) binary classifier:

thrj = argmax
b∈S

∑n

i=1
fm(Ai,j)× fm([[Âi,j > b]]) (6)

where [[x]] = 1 if x is true and [[x]] = 0 otherwise. fm(x) =
(x − 0.5) × 2, x = 0, 1 maps 0 and 1 to −1 and 1, respec-
tively.2 If the classification result is right for a sample, the
summation will be increased by 1, otherwise decreased by 1.
thr (1× (Ma − 1)) is the second parameter of PLS-Ranker.

Test process. The test process is illustrated in Fig. 1(a)
using orange line. Feature vector of the test sample xt (1×N )
is mapped to an indicator vector ât (1× (Ma − 1)) using the
trained linear PLS model:

ât = xtBpls (7)

Now elements in ât are real-valued. We should threshold each
element of ât into a binary indicator:

ât(1, j) := [[ât(1, j) > thrj ]], j = 1, 2, · · ·,Ma − 1 (8)

The rank (age) is obtained by summarizing elements in ât:

r̂t =
∑Ma−1

j=1
ât(1, j) + 1 (9)

Time cost. Considering the time cost, linear PLS rather
than kernel PLS is used. Specially, the linear PLS algorithm,
SIMPLS [6, 8], rather than the classical NIPALS, is adopted
in our experiments. SIMPLS has several advantages over NI-
PALS and one of them is not involving a breakdown of the X
matrix, and for this reason it is faster [6, 8].

Simultaneous dimensionality reduction and ranking.
In the PLS-Ranker, the score matrix T (n× p) is actually the
dimensionality reduction matrix of X (n×N ). Usually p�
N holds, and more latent variables (big p) are not necessarily
in practice (see Fig. 2 and Table 1, 4), thus PLS-Ranker is
very fast in practice.

3. EXPERIMENTS AND DISCUSSIONS
3.1. Datasets and settings
FG-NET3 contains 1002 images of 82 persons. Leave-one-
person-out (LOPO) setting is used [4, 17].

10.5 is the intermediate value of 0 and 1. Empirically, we can chose 0.5
as the threshold when numbers of the positive and negative samples used to
train the binary classifier are equal.

2If not mapping 0 to −1, there will be no difference between right classi-
fication 0× 0 = 0 and wrong classification 1× 0 = 0.

3http://www-prima.inrialpes.fr/FGnet/

MORPH. There exist different test settings for MORPH [18].
Both of the following settings are used in our experiments to
fully compare with the state-of-the-art methods.

Setting 1 selects 55132 images from the original MORPH
and categorizes them into S1 (10530), S2 (10530) and S3
(34072) [19, 20]. Firstly S1 is used for training and S2+S3
for testing, then S2 for training and S1+S3 for testing [10].

Setting 2 selects 5,493 images of Caucasian (Cau)4 from
the original MORPH [4]. 80% images of Cau are randomly
selected as training data and the rest as testing data [3, 4].

Note that each of S1 and S2 contains 3980 Black Males
(BM), 3980 White Males (WM), 1285 Black Females (BF)
and 1285 White Females (WF). We use S1 and S2 to study
cross-race-and-gender age estimation. The percentage of
training data in the target population is 50% [20]. Please refer
to [19, 20] for further details about the test strategy.
Evaluation metric is mean absolute error (MAE), i.e. the av-
erage absolute error between predicted age value and ground
truth over all testing samples.
Features. Bio-inspired features (BIF) [1] are extracted from
MORPH (Setting 1) (4376D) and Cau (4376D)5. Active Ap-
pearance Model features (AAM) [21] are extracted from FG-
NET (492D) and Cau (886D). AAM inherently uses PCA.
Large percent of variances are preserved when extracting the
AAM features because AAM is mainly used for extracting
raw low-level features rather than for dimensionality reduc-
tion, on which task our PLS-Ranker performs better.

3.2. Results and discussions
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Fig. 2. PLS-Ranker vs. PLS

Table 1. PLS-Ranker vs. PLS

Method MAE/year (num. of latent var.)
FGNET MORPH

PLS (classification) 8.14 (58) 6.10 (33)
PLS (regression) 5.78 (17) 4.40 (37)
PLS-Ranker 4.14 (45) 4.17 (49)

PLS-Ranker vs. PLS. PLS can be used for classification
and metric regression. The usage for classification is inserting
a 1 into a row vector 0 (1×Ma) to indicate membership, and
taking the vector as the output [6]. We compare PLS-Ranker
with the two usages of PLS on FG-NET and MORPH (Setting
1). Using different number of latent variables, PLS-Ranker
consistently outperforms PLS (see Fig. 2). Minimums of the

4http://www.iis.sinica.edu.tw/∼kuangyu/OHRank.htm
5We use BIF provided by [19, 20]. Intersection of the MORPH (Setting

1) [19, 20] and Cau [4] contains 5444 images.
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curves are tabulated in Table 1. PLS-Ranker performs well on
both big and small databases. However, the performance of
PLS for classification or regression degrades severely.

Guo et al. [10] achieves state-of-the-art result MAE=4.18
using kernel PLS complying with Setting 1 on MORPH.
However, kernel PLS has high computational cost compared
with linear PLS, as emphasized in Sect. 2.1. For this reason,
they firstly use linear PLS for feature dimension reduction
and then employ kernel PLS for regression. However, the
performance is degraded to MAE=4.43 [10].

Note that although linear PLS is adopted in PLS-Ranker
for high speed, it is interesting and easy to substitute linear
PLS with kernel PLS, and even CCA, kernel CCA or oth-
er MVA approaches to test our transform-to-ranker strategy.
However, it is not the focus of this paper.

Results on FG-NET and MORPH. We compare PLS-
Ranker with the state-of-the-art methods on FG-NET and
MORPH (Setting 2) in terms of both speed and accuracy.
CA-SVR [15] uses similar strategy to encode the numeric
age. However, when mapping feature vector to the attribute-
space, it uses similar method as MLR (Fig. 1(b)), which
is a naive MVA approach. Furthermore, after mapping, an-
other regression model has to be trained to map the point
in attribute-space to a scalar value [15]. CS-OHRank, al-
though gets lower MAE than CA-SVR, is time-consuming.
PLS-Ranker outperforms the complex feature combination
method [22] using only AAM features. PLS-Ranker also
outperforms the deep learning based method proposed re-
cently [3]. In [3], SVR is used for regression after extracting
raw features using CNN, which may harms its performance.

PLS-Ranker can simultaneously reduce feature dimension
and rank in high speed even for high-dimensional features
like BIF. The number of latent variables (components), i.e.
the feature dimension after reduction is often less than 100.
The training time is the minimum compared with other meth-
ods in the literatures [4, 15], two orders of magnitude (102)
faster than CA-SVR. The experimental results on FG-NET
and MORPH demonstrate that PLS-Ranker outperforms the
state-of-the-art methods in terms of both speed and accuracy.

Cross-race-and-gender age estimation. People from d-
ifferent races, with different genders, may age differently. On-
ly a few works focus on cross-race and cross-gender age es-
timation (Crg) [19, 20]. In this paper, we study the multi-
source cross-race-and-gender (ms-Crg) age estimation prob-
lem. In the problem, training set mainly contains faces of
other races or gender, and only a smaller number of samples
with the same race and gender as the testing faces. As Cp-
DA [20] achieves state-of-the-art results on the problem, we
compare our method with it. Note that our PLS-Ranker does
not exploit the race information as CpDA. The MAE is re-
duced 25.31% from 5.99 to 4.48 years, which outperforms
the state-of-the-art by a large margin. It demonstrates that
PLS-Ranker is robust to race and gender variations and can
extract latent stable and significant aging features.

Table 2. Comparison with the state-of-the-art methods

Method MAE/year
FGNET MORPH

MTWGP [2] 4.83 6.28
PLO [14] 4.82 −
AAM+CA-SVR [15] 4.67 5.88
Feat. combine + select [22] 4.49 −
AAM+CS-OHRank [4] 4.48 6.07
Regularized CA-SVR [17] 4.37 −
Deep Feature+SVR [3] 4.26 4.77
AAM+PLS-Ranker 4.14 5.38
BIF+PLS-Ranker − 3.77

Table 3. Training time required by different models. Tested
on an Intel(R) Core i5-3470 (3.2GHz), 8G RAM PC.

Method Training time/min
FGNET MORPH

OHRank [4] 1.30× 104 3.02× 104

SVR [23] 2.69× 100 2.08× 101

CA-SVR [15] 8.91× 10−1 6.10× 100

AAM+PLS-Ranker 7.20× 10−3(0.43s) 2.25× 10−2(1.35s)
BIF+PLS-Ranker − 1.25× 10−1(7.51s)

Table 4. Results on ms-Crg age estimation problem

Train Test MAE/year (num. of latent var.)
CpDA [20] PLS-Ranker

BF+WF BM 6.47 4.55 (27)
BF+WF WM 5.70 3.87 (49)

WM+BM WF 6.58 5.10 (80)
WM+BM BF 6.40 5.49 (67)
BF+BM WF 6.59 5.24 (88)
BF+BM WM 5.23 3.85 (63)

WF+WM BF 6.32 5.65 (39)
WF+WM BM 5.96 4.49 (31)

Average 5.99 4.48 (25.31%)

4. CONCLUSIONS
This paper proposes a partial least squares based ranker,
PLS-Ranker. The adaptive threshold learning strategy makes
each binary classifier of PLS-Ranker robust to the imbalance
problem of its training data, thus boosts ranking accuracy of
PLS-Ranker. Dozens of binary classifiers are jointly learned
through the proposed coding strategy. PLS-Ranker simulta-
neously reduces feature dimension and ranks in high speed
even for high-dimensional features, which makes it suitable
for large-scale ordinal ranking problems and real-time appli-
cations. It is easy to implement PLS-Ranker using existing
PLS tools. Experimental results show that PLS-Ranker out-
performs the state-of-the-art methods for age estimation in
terms of both accuracy and speed. PLS-Ranker also achieves
state-of-the-art result on the ms-Crg age estimation problem,
which further demonstrates its robustness. In future work,
we plan to apply the coding and adaptive threshold learning
strategy to other MVA methods such as KPLS, CCA, KCCA,
and try to boost their performances on ranking problems.
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