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ABSTRACT
Action recognition via WiFi has caught intense attention
recently because of its ubiquity, low cost, and privacy-
preserving. Observing Channel State Information (CSI, a
fine-grained information computed from the received WiFi
signal) resemblance to texture, we transform the received CSI
into images, extract features with vision-based methods and
train SVM classifiers for action recognition. Our experiments
show that regarding CSI as images achieves an accuracy
above 85%. Our contributions include:

• To our best knowledge, we are the first to investigate the
feasibility of processing CSI by vision-based methods
with extendable learning-based framework.

• We regard CSI of each Tx-Rx pair as a channel and in-
vestigate early and late fusion of multi-channels.

• We could know where and what action user performs
with location-awareness classification.

Index Terms— WiFi, vision-based, texture, action recog-
nition

1. INTRODUCTION

Researches have been devoted to action recognition, which
is fundamental and essential to human computer interaction,
video content-based retrieval, elders monitoring, shoppers be-
havior analysis and so on. As the most intuitive way, vision-
based methods have been widely investigated. [1] harnessed
deep convolutional neural network to learn temporal-spatial
relationship and achieved an average 90% accuracy on KTH
dataset and [2] achieved an 95% accuracy on KTH by learn-
ing the action trajectory.

However, not in every place and scenario are cameras
applicable. For example, in restroom where privacy is of
first priority or in places where lighting is scarce, cameras
are of little use. Nevertheless, action recognition could not
be spared in these places. For instance, timely detection of
falling in bathroom limits the damage to minimum. Hence,
previous works proposed using wearable devices such as ac-
celerometer to obtain the speed profile and detect the action
[3].

Fig. 1: Framework Overview (Blocks with yellow mark are
the main differences between previous works and our work.)

The problem of this approach is that it requires users to
wear devices, which is unrealistic in some scenarios like tak-
ing a shower, suggesting non-contact method is preferable.
Since cameras typically have privacy constraints, wearable
devices are not so extendable and extra apparatus should be
as little as possible, we chose WiFi as our media.

In the beginning, researchers analyzed the frequency fluc-
tuation of raw signals received by USRP, a software defined
radio, to pinpoint timestamp of motion [4]. However, this
method requires transforming a large amount of time domain
signals to fine-grained frequency domain signals by perform-
ing Fourier transform, which costs too much time, making it
impossible to be applied on real-time system. Hence, follow-
ing works suggested directly analyzing the troughs and peaks
on time domain signals [5]. However, commercial APs do not
provide raw signals, urging later works [6, 7, 8] to perform
analysis on CSI with modified driver [9]. We also realize our
work based on this CSI toolkit.

Though extensive efforts have been put into action recog-
nition harnessing CSI, to the best of our knowledge, most ex-
isting works extract ad-hoc features which might encounter
accuracy debasement as scenarios change. Observing differ-
ent textural appearances on transformed images, we investi-
gate whether a general solution is possible via vision-based
methods. The promising accuracy on predicting action and its
location proves the feasibility of applying vision and learning
based methods on transformed images for action recognition.

The rest of the paper is organized as follows. We briefly
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describe how action recognition via WiFi is realized and the
relationship between CSI and textural appearance in Section
2. Our framework is introduced in Section 3. Then, we
present experiment results in Section 4. Finally, we conclude
about image processing applied on WiFi action recognition in
Section 5.

2. BACKGROUND

As WiFi wave propagates from transmitter (Tx) through the
air to receiver (Rx), it bumps into objects and goes through
several reflections. When an action takes place, paths reflect-
ing from human body differ. Action recognition could thus be
realized.

2.1. Raw Signal

From the frequency aspect, if we view human body as a
source of the reflected signal, when the user pushes toward
receiver, the relatively approaching speed causes a positive
Doppler shift at the receiver. On the contrary, a negative
Doppler shift occurs as the user’s hand departs from the
receiver. Harnessing Doppler effect, [4] achieves a 94%
accuracy differentiating between nine gestures.

As from the amplitude angle, since the total path from Tx
to human body and to Rx is shorten as pushing happens, the
power dissipation decreases, rendering a rising amplitude on
Rx side. Utilizing this phenomenon, [5] successfully lessens
computational cost by performing analysis directly on time
domain with an 91% accuracy classifying four gestures .

However, commercial APs do not provide raw signals,
nudging researches toward CSI-based approaches.

2.2. Channel State Information

Modern WiFi protocols such as 802.11n implement OFDM
(Orthogonal Frequency-Division Multiplexing) for reducing
interference and fading. It segments the bandwidth into sev-
eral closely-spaced sub-carriers, each carrying a data stream.
Due to space constraint, for more details about OFDM please
refer to [10].

Channel Frequency Response (CFR) describes the com-
bined effect of fading, scattering and decay of a specific sub-
carrier, usually a complex number detailing the phase shift
and power decay. CSI is the union of these CFRs. When
an action happens, the number of reflecting paths and their
distance change accordingly and thereby, by extracting infor-
mation from the received CSI, one could classify the action
performed and even locate where it happened.

[7] presents a user-feedback system, separating actions
into walking and in-place activity, which is capable of iden-
tifying several trajectories and activities. [8] proposes a
PCA-based denoising method followed by discrete wavelet
transform and introduces CARM, a system capable of human

activity recognition independent of environment variances.
Nonetheless, parts of their features are related to time du-
ration of the action, which to our knowledge, might render
classifiers highly dependent on duration.

2.3. CFR power and texture

From [8], we know CFR of a sub-carrier with frequency f at
time t could be expressed as a sum of static CFR and dynamic
CFR, expressed as H(t, f) in equation (1), where Hs(f) is the
sum of CFRs for static paths, Hd(f, t) is the sum of CFRs for
all dynamic paths and ∆f is the frequency offset between Tx
and Rx.

H(f, t) = e−j2π∆ft (Hs(f) +Hd(f, t)) (1)

Hd(f) =
∑
k∈Pd ak(f, t)e−j

2πdk(t)

λ , where ak(f, t) is atten-
uation of the kth path at time t and frequency f, dk(t) is the
distance of kth path and Pd is the set of all dynamic paths.

If an object moves at a constant speed, the distance of
the kth path, dk(t), could be expressed as dk(t) = dk(0) + vk.
Thus CFR power |H(f, t)|2 at time t and frequency f is then
derived as (Details omitted due to space constraint):

|H(f, t)|2 = (2)∑
k∈Pd

2|Hs(f)ak(f, t)| cos

(
2πvkt

λ
+

2πdk(0)

λ
+ φsk

)
+ C(f, t)+

∑
k,l∈Pd
k 6=l

2|ak(f, t)al(f, t)| cos

(
2π(vk − vl)t

λ
+

2π(dk(0)− dl(0))

λ
+ φkl

)

where C(f, t) is a constant given sub-carrier frequency and
time, φsk and φkl represent initial phase offsets.

We observe that in equation (2), frequency of cosine
waves are determined by the action speed vk. A faster speed
leads to a larger phase change and renders denser stripes on
transformed images, as shown in Figure 2. Since actions
of different speeds present different textures on transformed
images, we propose applying vision-based methods on trans-
formed images.

Fig. 2: Transformed images of standing still, clapping, boxing
(X-axis: timestamp, Y-axis: 30 sub-carriers × 4 channels).
We could observe a faster punching speed leads to denser
stripes, as in the rear part of boxing.
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3. FRAMEWORK

In this section, we describe the overall flow of the proposed
framework, from collecting CSI, pre-processing, extracting
features to training classifier, as shown in Figure 1.

3.1. Collecting CSI

We use MacBook Pro 2014 as Tx and Fujitsu SH560 with
Intel 5300 NIC as Rx, each having two antennas and commu-
nicating on 2.4GHz. With NTx = 2, NRx = 2, we have 2 × 2 =
4 Tx-Rx pairs, each generating a set of CSI with dimension 30
(sub-carriers) × t (samples). We then process these four sets
of CSI separately and investigate whether early or late fusion
yields better performances.

3.2. Pre-processing

Due to interference caused by other devices in the same
WiFi channel, packets received are not evenly distributed in
time. Thus, we linearly interpolate raw CSI to 1000 sam-
ples/second. We then apply 5th-order Butterworth filter with
cutoff frequency 50Hz to remove high-frequency noises. And
since power distributions of different sub-carriers vary, we
normalize each sub-carrier by subtracting an average of a
moving-window, width set as 300ms, from each sample.

3.3. Feature Extraction

After transforming a set of CSI into an image of specific size,
we experiment with Gabor and BoF-SIFT on it. Though deep
features are potentially more powerful, due to the scarcity of
current data we will not address it in our work.

3.3.1. Gabor Filter

A Gabor filter is defined by a plane wave multiplied by a
Gaussian function. By setting different scales and orienta-
tions, a set of filters are obtained (details could be found in
[11]). These filters are convoluted with a transformed image.
When a local patch resembles the filter, a high response will
be obtained. Finally, a response map is produced, of which
we then take two statistics, mean and standard deviation.

We set #scale, #orientation and size of the Gabor filters
to 8, 6 and 15 respectively, which usually produce better ac-
curacy from our measurements. Hence, the dimension of our
final Gabor feature is 8 × 6 × 2 = 96.

3.3.2. Bag of Feature-SIFT

SIFT (Scale Invariant Feature Transform) seeks to transform
an image into a collection of keypoints, each described by a
feature vector invariant to illumination, translation, rotation
and scaling [12]. We take all feature vectors of the training
images from a Tx-Rx pair and perform K-means clustering

to find 48 centroids. BoF-SIFT feature is then generated by
quantizing vectors of an image to the nearest centroid, pro-
ducing a histogram of dimension 48.

Thus, in testing phase, we quantize the feature vectors of
the input image into centroids found during training and feed
the produced 48-dimension feature into the trained classifier.

3.4. Training Classifier

For each of the four Tx-Rx pairs, we obtain a feature vec-
tor. We investigate fusing them before or after training linear
SVM classifiers.

3.4.1. Early Fusion

We concatenate four features from four Tx-Rx pairs into a new
feature. Then, we train a single classifier and take action with
the highest probability as the predicted result.

3.4.2. Late Fusion

Instead of concatenating four feature vectors and training a
single classifier, we train one for each pair, so there would be
four classifiers. Given a testing instance, probability of each
action is obtained, rendering four probability vectors of length
#action (seven in our case). Summing these four vectors, we
take action with the highest probability as the predicted result.

4. EXPERIMENTS

4.1. Datasets

Dataset A is collected in a seminar room, as shown in Figure
3, for verifying if our method could recognize actions as well
as locations. We define seven actions: Box, Clap, Wave hand,
Kick, Quick squat, Jump, Stand still and six locations a, b, c,
d, e, f. A single subject performs each action 10 times on each
location, so in total we have 7× 6× 10 = 420 data. Dataset B
is collected to compare with vision-based methods on video
action recognition, and thus we define actions the same as the
benchmark dataset, KTH [13]. These actions include: Box,
Clap, Wave hand, Walk, Jog, Run, Stand still. Two subjects
are asked to perform each action 10 times and in total we have
2 × 7 × 10 = 140 data.

All actions are performed in a 5-second period, each gen-
erating four sets of CSI with dimension 30 × 5000 (interpo-
lated to 1000 samples/second). We then transform them into
four images of size 576 × 432.

4.2. Experiment Results

Our experiments mainly focus on examining the feasibility of
the proposed method. We leave comparing the strength and
limitation of different approaches as our future study.
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Fig. 3: Subject performs actions in each circle.

We evaluate the performance using 10-fold cross valida-
tion (Due to the superiority of late fusion to early fusion in
Table 4, we only list results of late-fusion). First, we con-
duct experiments on dataset A, with cross-validation accuracy
shown in Table 1. We could verify that viewing CSI as texture
is feasible and Gabor filters, particularly suitable for texture
recognition, perform better. Hence, following experiments
are primarily based on Gabor.

Location BoF-SIFT Gabor
a 0.6429 0.8436
b 0.8143 0.9657
c 0.7714 0.8979
d 0.8000 0.8671
e 0.5143 0.8121
f 0.7429 0.8150

all 0.5048 0.7745

Table 1: Accuracy of Gabor and BoF-SIFT on dataset A.

Wondering if location affects the accuracy, we split the
classification process into two stages, namely, location iden-
tification followed by action recognition. Location is pre-
dicted using classifier trained on all data first. Then a clas-
sifier trained with data of the suggested location is employed
to obtain the action. The results are shown in Table 2.

Target Accuracy
location 0.98

location + action 0.83

Table 2: Accuracy of location-awareness classification.

The accuracy boost from 77% to 83% of action classifica-
tion reveals that our features still embed location information,
which causes a slight accuracy decrease when classifying ac-
tion using only a single classifier trained with data from all
locations. To further testify, we test the trained classifiers on
data of unseen location and find the accuracy drops, showing

that our methods are still location-dependent, which will be
discussed later in Section 5.

Table 3 shows the results of cross-validation on both
datasets using early fusion and late fusion. As the statistics
show, late fusion performs better since it exploits four dif-
ferent channels with four classifiers. Though each classifier
is weaker compared to that of early fusion, more channels
provide more information for recognition. Also from results
on dataset B, we believe WiFi could actually supports cam-
eras in differentiating actions that are visually similar but of
different CSI patterns.

Dataset A Dataset B
Early 0.7024 0.8023
Late 0.7745 0.8696

Table 3: Accuracy of early and late fusion applying Gabor.

Finally, we conduct an experiment exploring whether size
of the transformed images affects accuracy, as shown in Table
4. The result demonstrates that as the size of images becomes
smaller, performance remains excellent as long as the size of
filters alters accordingly, implying the proposed framework is
computationally efficient.

Size Filter size Accuracy
5000 × 30 15 0.6654
576 × 432 15 0.8696

72 × 54 15 0.7564
72 × 54 9 0.8446

Table 4: Accuracy on dataset B between different sizes (in
pixels) of image.

5. CONCLUSION

We observe the resemblance of CSI to texture and apply
vision-based methods on images transformed from CSI. With
this brand new angle, we propose a method which achieves
accuracy above 85% identifying the predefined seven actions.
Though environment dependency mentioned in Section 4.2 is
still a challenging issue, which lowers the performance when
the user deviates from the training locations too much, we
believe, as the amount of data increases, techniques such as
deep neural network could be capable of finding the hidden
factor more clearly and thus mitigate such degradation.

For future work, we would collect more training examples
and more actions to further verify that the proposed method
is promising. Also, since collecting CSI is time-consuming,
we would be working on utilizing surveillance camera to au-
tomate data collection and also explore data augmentation
which is commonly utilized in training neural network [14].
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