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ABSTRACT
Research on multimodal emotion recognition has drawn much atten-
tion recently in diverse disciplines. With the increasing amount of
multimodal data, unsupervised or semi-supervised learning has be-
come highly desirable to automatically discover expression of emo-
tion patterns in behavioral data. We present a novel approach for
multimodal emotion learning using only a small amount of labels.
Our approach is hinging on probabilistic latent semantic analysis
(pLSA) that defines the latent variable as the emotion class, moti-
vated by the conceptualization that human emotion acts as a latent
control variable that regulates the external behavior manifestations,
such as through speech and body gesture. In our approach, we rep-
resent the audio-visual information in an utterance as a bag of mul-
timodal words. To exploit the interrelation between speech and ges-
ture modalities, we propose a canonical correlation analysis (CCA)
based vocabulary of multimodal words. Our approach has achieved
promising experimental results. We have also demonstrated the su-
periority of the CCA-based multimodal words over those derived
directly from the original cues.

Index Terms— Multimodal emotion recognition, unsupervised
learning, semi-supervised learning, latent topic modeling

1. INTRODUCTION

The expression of emotions is inherently multimodal. It involves
verbal and nonverbal behavior communicated through speech, spo-
ken language, as well as gesture and posture of the face and body.
The multimodal human behavior plays an essential role in emotion
expression. Research on multimodal emotion recognition has hence
received much interest recently especially with the increasing preva-
lence of multimodal data [1] [2]. Most of the existing approaches
are based on supervised learning which requires amounts of labeled
training data. However, with the increasing amount of available mul-
timodal data [3] [4], it is tedious and expensive to obtain detailed
human annotations. Moreover, the emotion annotation itself is chal-
lenging: emotion is implicitly conveyed through the external behav-
ioral manifestations, which may result in difficulties for annotators
in perceiving the hidden emotional feeling and could lead to unreli-
able labels. The exact emotional state however may not be needed
in some applications, such as detecting emotion changes over time,
where capturing relative emotion variation is desired. Unsupervised
or semi-supervised learning hence is highly desirable for discover-
ing emotion patterns from large-scale unlabeled data. The goal of
this work is to develop a technique for automatically discovering the
hidden emotion classes from speech and body gesture data of human
interactions with only a small amount of labels.

Research efforts devoted to unsupervised or semi-supervised
multimodal emotion learning thus far have been limited. Bone et
al. proposed a knowledge-based measure for emotional arousal from
prosodic features, and demonstrated its robustness across databases
[5]. One weakness of such metric is the lack of generalizability in
more expressive emotion varieties. Nuances of four emotion cate-
gories have been explored from postures using multivariate analysis
[6]. Zhang et al. focused on unsupervised adaptation of acoustic
features across multiple corpora for emotion recognition [7]. How-
ever, such cross-corpus adaptation requires the same type of feature
or emotion inventory, which is often not available in practice.

Our work on multimodal emotion identification is inspired by
the success of the unsupervised techniques in textual emotion de-
tection [8] [9]. Among these techniques, latent topic models, which
associate the latent emotion variable with the co-occurrence of
words and documents, are the most popular. For example, D’Mello
et al. applied latent semantic analysis for exploring the affect of
a learner from conversational cues [8]. Promising results for tex-
tual affect recognition have been achieved by probabilistic latent
semantic analysis (pLSA) in [9]. The pLSA approach introduced by
Hofmann defines a proper generative model of data [10]. It allows
to automatically discover latent semantic clusters from text data and
to distinguish different types of word usage. This model has also
been successfully applied in the challenging computer vision tasks
with unlabeled images or videos, such as object detection, scene
classification and human action categorization [11] [12], as well as
audio classification [13].

In this work, we propose an approach hinging on pLSA for mul-
timodal emotion learning with only a small amount of labels. The
pLSA-based approach is motivated by the conceptualization that the
emotion state acts as a latent control variable that regulates the exter-
nal behavior manifestations, such as through speech and body ges-
ture. In our approach, the latent variable is defined as the emotion
class that governs the multimodal cues. The pLSA model is designed
based on a bag of words representation. Analogous to the video
representation using visual words, we transform an audio-visual ut-
terance into a sequence of multimodal words and represent it as a
bag of multimodal words. In order to exploit the association be-
tween modalities which jointly evolve over time during emotion ex-
pression, we develop a canonical correlation analysis (CCA) based
vocabulary of multimodal words derived from the CCA transforma-
tions of speech and body gesture. We further show how to adapt
the pLSA model of multimodal words learnt from unlabeled train-
ing data to a small amount of labeled data, i.e., a statistical alignment
procedure to establish the cluster-emotion correspondence.

In brief, the main contribution of our work is three-fold: 1)
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discovering utterance-level emotion classes in a lightly-supervised
manner based on pLSA; 2) developing a CCA-based vocabulary of
multimodal words for the audio-visual utterance representation; 3)
presenting a statistical alignment procedure for the establishment of
cluster-emotion correspondence. Our experiments show promising
results, supporting that the inferred clusters from multimodal cues
convey emotion information. Experimental results have also shown
the superiority of the CCA-based multimodal words over those de-
rived directly from the original cues.

2. PROPOSED APPROACH

Our goal of this work is to automatically discover utterance-level
emotion classes from speech and body gesture data using only a
small amount of labels. For this purpose, we propose a lightly-
supervised approach hinging on pLSA that is described as below.

2.1. CCA-based Multimodal Cues

Research has shown that speech and body gesture are coherently
linked to express emotions [14]. We hence exploit the association
between speech and body gesture by employing canonical correla-
tion analysis (CCA) [15] [16]. CCA is a useful statistical technique
for correlating the linear relationship between two variables and has
been used in a number of human-centered signal processing applica-
tions, such as the articulatory-to-acoustic mapping in speech recog-
nition [17], bimodal fusion of facial expressions and body gesture
in emotion recognition [18], and coupled information encoding of
photo-sketch images in face recognition [19]. In our present prob-
lem, we have two modalities: speech X ∈ Rdx×N and body ges-
ture Y ∈ Rdy×N , where N is the number of samples (frames) in
the dataset. CCA finds a pair of linear projections αTX and βTY
by maximizing their correlation. Similarly, subsequent vectors αm

and βm can be sought by maximizing the correlation between αT
mX

and βT
mY subject to their decorrelation with the previous ones. We

hence obtain the transformation matrices for the two modalities from
the CCA projection vectors, A = [α1,α2, · · · ,αm] and B =
[β1,β2, · · · ,βm]. A new multimodal feature set is then formed by
fusing the projections, F = [ATX;BTY] ∈ R2m×N . This new
representation better captures the joint emotion information shared
by modalities than the original cues [X;Y] [17] [18].

2.2. Multimodal Codebook Creation

The latent topic model pLSA is inspired by the bag of words (BoW)
representation originally proposed in the text analysis domain. BoW
has also shown to be an effective and robust image or video represen-
tation in object detection and action categorization [11] [12]. It re-
duces data noise and transforms an entity into an effectively compact
form — a histogram of words. In this work, we describe an audio-
visual utterance, u ∈ {u1, u2, · · · , uU}, using the BoW representa-
tion as well based on a vocabulary of multimodal words (codebook)
created from the multimodal data. In order to construct an effec-
tive multimodal codebook, we employ the CCA-based multimodal
features F obtained in Section 2.1 and apply the k-means cluster-
ing method. Each resulting cluster center defines a multimodal word
w ∈ {w1, w2, · · · , wV } in the codebook of size V . Accordingly,
each frame in an utterance is assigned to a cluster membership and
is quantified as a multimodal word.

Fig. 1. The graphical model representation of pLSA [10]. The non-
shaded node is the latent emotion variable z. The shaded nodes are
observable variables of the utterance u and multimodal word w.

2.3. Latent Emotional Topic Model

In this section, we describe pLSA in the context of utterance-level
emotion identification. pLSA is a latent variable model which as-
sociates the latent topic variable z ∈ Z = {z1, z2, · · · , zK} with
the co-occurrence of a multimodal word w in each utterance u. The
graphical model representation is illustrated in Fig. 1. Note that the
topics inferred by pLSA are not restricted to the conventional seman-
tics but dependent on the types of features. In our present problem,
emotion-related multimodal features are applied (see Section 3.1),
and the inferred topics hence capture affective dimensions.

Given a collection of audio-visual utterances which are de-
scribed as sequences of multimodal words, the joint probability over
u and w can be expressed as,

P (u,w) = P (u)P (w|u). (1)

As illustrated in Fig. 1, u and w are independent conditioned on the
latent variable z. Hence,

P (w|u) =
∑
z∈Z

P (z|u)P (w|z). (2)

P (z|u) is the probability that the emotion class z appears in a spe-
cific utterance u, and P (w|z) is the probability that a multimodal
word w occurs in a particular emotion class z. As seen in Eq. (2),
the word distribution in a specific utterance, P (w|u), is modeled as
a convex combination of factors P (w|z) with the mixing weights
P (z|u). The model parameters, P (z|u) and P (w|z), can be esti-
mated by maximizing the likelihood of the multimodal words that
occur in the existing utterance collection, using an expectation max-
imization (EM) algorithm [10].

Once we have learnt the emotion-specific word distribution,
P (w|z), from the unlabeled training data, we can identify the
hidden emotion class given a new utterance unew. According to
Eq. 2, the word distribution given unew is expressed as a mixture
of P (w|z), i.e., P (w|unew) =

∑
z∈Z P (z|unew)P (w|z). We fur-

ther estimate the mixing weights P (z|unew) by minimizing the
KL-divergence between the true distribution P (w|unew) and the
empirical one P̃ (w|unew). This procedure can also be achieved by
an EM algorithm [10]. The emotion class of unew is thus identified
as below,

ẑu = argmax
z

P (z|unew). (3)

2.4. Cluster-Emotion Correspondence

As noted in Section 2.3, each cluster z inferred from the affect-
related multimodal cues corresponds to an emotion class. Since
pLSA is learnt in an unsupervised manner, the emotion class that
each cluster represents is still unknown. To establish the correspon-
dence between the clusters and the emotion labels (i.e., assigning
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an emotion label to each cluster), we develop a statistical alignment
procedure by leveraging a small amount of labeled data.

Suppose that a small subset of the training data has been man-
ually assigned with emotion labels e ∈ {e1, e2, · · · , eK}. The
emotion-specific empirical word distribution P (w|e) can then be
computed from the annotated dataset. Intuitively, the word distribu-
tions in a specific learnt cluster z and in the corresponding emotion
class e, P (w|z) and P (w|e), are expected to shape similarly. There-
fore, an optimal cluster-emotion correspondence (z, e) is uncovered
when the distance between P (w|z) and P (w|e) is minimal. Let S
be one permutation of the indices K = {1, 2, · · · ,K}, and there
are K! possible permutations in total. Then, our goal is to find an
optimal permutation Ŝ such that the weighted average of the KL-
divergence between P (w|zk) and P (w|esk ) is minimized,

Ŝ = argmin
S

K∑
k=1

DKL(P (w|zk)||P (w|esk )) · P (esk ), (4)

where sk is the k-th element in the permutation S, and P (e) is the
prior of the emotion class e. The cluster-emotion consensus is hence-
forth determined as: {(zk, eŝk )|k ∈ K}.

3. DATABASE DESCRIPTION

In this work, we use the USC CreativeIT database for multimodal
emotion learning experiments [4]. It is a freely-available multimodal
database of dyadic theatrical improvisations performed by pairs of
actors. Interactions are goal-driven, which can elicit natural realiza-
tion of emotions and expressive multimodal behavior. There are 50
interactions in total performed by 16 actors. The audio data of each
actor was collected through close-up microphones at 48 kHZ. A Vi-
con motion capture system with 12 cameras captured the detailed
full body Motion Capture (MoCap) data at 60 fps, i.e., the (x, y, z)
positions of the 45 markers over each actor, as shown in Fig. 2(a).

(a) Motion Capture Markers. (b) Angles for hand joints.

Fig. 2. (a) The positions of the Motion Capture markers; (b) The
illustration of Euler angles for hand joints.

3.1. Gesture and Acoustic Features

This work focuses on hand gesture which is the most expressive body
gesture in human communication [20]. To extract hand gesture fea-
tures, we manually mapped the motion data, i.e., the 3D locations of
the markers, to the angles of hand joints using MotionBuilder [21].
The joint angles are popular for motion animation [22] [23] and ges-
ture dynamics modeling [20] [24]. Fig. 2(b) illustrates the Euler an-
gles (θ, φ, ψ) of hand joints (arm and forearm) in x, y, z directions.
The angles of both right and left hand joints are used as hand gesture
features. In addition, we extracted acoustic features of pitch, energy
and 12 Mel Frequency Cepstral Coefficients (MFCCs). These fea-
tures were extracted every 16.67 ms (60 fps) with an analysis win-
dow length of 30 ms to match with the MoCap frame rate. The pitch
features were smoothed and interpolated over the unvoiced/silence

Fig. 3. The resulting emotion classes in the valence-activation space
for K = 2 and K = 3.

regions. We further augmented both hand gesture and acoustic fea-
tures with their 1st derivatives. These extracted multimodal features
have shown to be emotion-related and are popular in affective com-
puting community [1] [25]. All the features were z-score normalized
in a subject-dependent way.

3.2. Reference Emotion Annotation

In the database, the emotional state of each actor is annotated in
terms of activation (excited vs. calm) and valence (positive vs. nega-
tive) by three or four annotators. To preserve the continuous flow of
the body gesture during an interaction, time-continuous emotions for
each actor are annotated throughout the recording. Annotators used
Feeltrace [26] to time-continuously indicate the perceived emotion
attribute value from−1 to 1 for each actor while watching the video
recording (both speech and body gesture) [27].

For each actor recording, we compute the agreement (Pearson
correlation) between every pair of annotators and only keep the an-
notator pairs with agreement greater than 0.5. Our work aims at the
latent emotion discovery of utterances. Hence, we further segment
each actor recording into utterances according to speech regions, re-
sulting in 1795 utterances. The values of activation and valence of
each utterance are calculated by averaging the annotations among
frames within the utterance and across annotators. To provide richer
and more expressive emotion varieties, we jointly consider activation
and valence to create K discrete emotional classes in the valence-
activation emotional space using k-means. The attribute-based emo-
tion labels have also shown to be related to the categorical emotions
[24] [28]. We consider classes with K = 2 and K = 3. Fig. 3
shows the resulting emotion classes. The emotion labels are used as
ground truth for the experiment evaluation in Section 4.

4. EXPERIMENTAL RESULTS

In the experiment, we evaluate our approach by contrasting with two
conventional supervised baselines in emotion recognition tasks. The
first baseline represents an utterance using the popular description of
utterance-level statistical functionals, such as mean, range, quantile,
maximum or minimum, of the features [1]. The second baseline de-
scribes an utterance as BoW from a codebook created in the training
data. Both baseline representations are used as input into a linear
SVM classifier that is widely used in emotion recognition [1] [20].
In order to assess the effectiveness of the CCA-based multimodal
cues, we evaluate each method respectively using only the speech
features X, the gesture features Y, the original multimodal charac-
teristics [X;Y], as well as the CCA-based multimodal cues F. Note
that when using speech, gesture or the original multimodal features,
the codebook is constructed in the same way as depicted in Section
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Fig. 4. Recognition accuracy using our approach with different fea-
tures vs. codebook size V .

2.2. We adopt the leave-one-subject-out scheme for parameter selec-
tion in different methods. In each fold, the two baselines with linear
SVM use all the labels in the training data, while our approach ran-
domly keeps only 10% (an empirical value) labels in the training
data for aligning cluster-emotion correspondence (see Section 2.4).

Table 1 presents the results of recognizing 2-class and 3-class
emotions in the valence-activation space using different methods.
Table 1 first shows that the results achieved by our approach are
comparable to or even slightly better than those obtained using a lin-
ear SVM of full supervised learning. One reason could be that our
approach infers the cluster structure in a non-geometrical way with
respect to the co-occurrence of multimodal words. This result shows
that the discovered clusters capture affective dimensions. Moreover,
it is interesting to observe that the CCA-based multimodal cues out-
performs the original ones with different methods. This reveals the
effectiveness of CCA for exploiting the association among modali-
ties, leading to a more informative form of multimodal description.
We can also observe that the BoW descriptors improve the perfor-
mance compared to the non-BoW representations under the linear
SVM. Previous work has demonstrated the success of BoW in im-
age or video representation [11]. Our results further corroborate that
such an approach is also suitable for representing low-level emotion-
relevant multimodal features of an utterance, especially when com-
bining with the CCA-based multimodal codebook. Another obser-
vation from Table 1 is that the multimodal cues are more informative
about emotions in contrast to the speech or gesture only information.

We investigate the effect of the codebook size on the recognition
performance of our approach. Fig. 4 shows the relation of the recog-
nition performance and the codebook size using different types of

Table 1. Accuracies (%) for recognizing 2-Class and 3-Class emo-
tions in the valence-activation space using different methods.

Method Feature K = 2 K = 3

Non-BoW (SVM)

Gesture 61.8 42.1
Speech 62.7 46.5

Multimodal 63.6 48.0
CCA-based Multimodal 64.6 49.3

BoW (SVM)

Gesture 62.5 45.6
Speech 66.1 49.8

Multimodal 66.6 50.8
CCA-based Multimodal 68.1 51.0

Our approach

Gesture 63.3 47.4
Speech 66.0 49.7

Multimodal 68.7 51.4
CCA-based Multimodal 70.9 53.0
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Fig. 5. The Key word distribution with codebook size 15 in each
emotion class.

cues. When using the CCA-based multimodal words, the best per-
formance in both 2-class and 3-class recognition tasks is achieved
with the codebook size 35. We also notice that a more compact
codebook is required for the single modality of speech or gesture to
perform well, compared to the multimodal case.

5. ANALYSIS OF MULTIMODAL WORD USAGE

One auxiliary benefit of the pLSA model is that it provides the
emotion-specific word distribution P (w|z) and utterance distribu-
tion P (u|z) which could be used to localize the emotion-dependent
key words (frames) within an utterance. Analysis of the identified
key words with respect to a specific emotion is helpful for under-
standing the multimodal characteristics in each emotion category.
Similarly to identifying the utterance-level emotion class, we could
assign an emotion label to each word within the utterance according
to the posteriors P (z|w, u),

ẑw = argmax
z

P (z|w, u), P (z|w, u) =
P (w|z)P (z|u)∑
z P (w|z)P (z|u)

. (5)

The key words per utterance are thus localized when they are as-
signed to the same utterance-level emotion class.

As an example, we compute the histogram of identified key
words in each emotion category using the CCA-based multimodal
codebook of size 15. The results are presented in Fig. 5. Bars of dif-
ferent colors represent key word distributions in different emotion
classes. A clear observation is the discrimination of the distribu-
tions of key words in distinct emotion classes. Let’s take the 2-class
emotions in Fig. 5(a) for instance. The popular key words in class
I are 8, 10 and 14, while 3, 5 and 9 are dominant in class II. Some
key words are also shared among distinct classes, such as 6 and 9 in
Fig. 5(b). This analysis sheds light into the understanding of the in-
terplay between multimodal behavior and the emotion class. It also
explains the effectiveness of our approach for emotion identification
as demonstrated in the results of Table 1.

6. CONCLUSION AND FUTURE WORK

In this work, we presented an approach hinging on pLSA for multi-
modal emotion learning with light supervision using a small amount
of labeled data. This approach can be readily applied for emotion
change detection over time, a topic for future work. Also, in the
future, we plan to extend this model by incorporating the cluster-
emotion alignment procedure in the learning stage. We could also
consider using advanced nonlinear mapping techniques, such as
deep neural network [29], instead of CCA for multimodal modeling.
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