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ABSTRACT

This paper identifies moving objects in a video that are as-
sociated to the corresponding audio, by exploiting the correlation
of audio and video features. The proposed technique is based on
the correlation of motion features of eigen moving objects with
audio mel frequency cepstral coefficients features using canoni-
cal correlation analysis. We propose two strategies to detect the
eigen moving objects: (i) Per-frame mapped eigen moving ob-
ject (PFEMO) and (ii) Temporally coherent eigen moving object
(TCEMO). While PFEMO segments each frame using superpixel
segmentation, TCEMO exploits supervoxel based video segmen-
tation to identify eigen moving objects. Qualitative (mean-opinion
score) and quantitative (precision, recall, area under the curve, hit ra-
tio) analysis shows that the performance of the proposed techniques
is superior to those of the state-of-the-art methods.

Index Terms— canonical correlation analysis; eigen analysis;
multimodal analysis; supervoxels; superpixel

1. INTRODUCTION

Real life events are inherently multi-modal. Humans combine data
from multiple sources to form a meaningful and coherent picture of
the environment. Multi-modal analysis of audio and video modes
has proven to be highly valuable for the task of moving sounding
object localization. This is due to its vast applicability in tasks
like surveillance, automatic management of video conferences [1],
sound-source separation, speech recognition [2], speaker identifi-
cation [3], etc. The objective of this paper is to identify moving
objects in a video which are highly associated to the audio, in a
cocktail party scenario [4].

Multi-modal signals are a set of heterogeneous data arrays that
exhibit mutual interdependency, as they originate from the same
physical phenomena. Thus, there exists a temporal correlation be-
tween events in the different modes. Fusion techniques integrate
information from different modes to establish relationships between
the modes. It has been shown in [5] that combining complemen-
tary information from different modes improves the performance of
person authentication systems significantly. The varying dimension-
ality and resolution of the modes make joint analysis challenging.
Many methods have attempted to localize moving sounding objects
in controlled environments such as conference rooms [6] and lecture
rooms [7], using microphone and camera arrays. However, these
techniques are not relevant for real-time videos such as those taken
by a single cellphone or surveillance camera. The challenging task
is to track moving sounding objects by fusing the visual signal with
a single stereo audio signal.

Existing approaches in the joint audio-visual domain aim to
identify the pixels [8–10] or objects in the video [11, 12] that are
most correlated to the audio. In [8], pixels associated with the au-
dio were obtained using the correlation between audio and video.

This correlation was measured using an estimate of the Mutual
Information (MI) between the energy of the audio track and the
intensity of a single pixel. In [9], Canonical Correlation Analysis
(CCA) was used to correlate audio and video modalities and identify
moving sounding pixels. However, this method limits the temporal
resolution of coincidence detection. In [10], the task of identifying
moving-sounding objects was handled using a coincidence-based
measure to evaluate the correlation between the onsets of both audio
and video modes. This measure is based on the assumption that if
audio-visual events are co-incident, they are related.

Methods dealing with pixel level localization are quite sensi-
tive to visual noise and do not reveal semantic details of the objects
present in the video. Synchrony of graph-cut based pixel regions
with audio was proposed in [12], to extract audio-visual objects.
The non-linear diffusion process proposed in [13] measured coher-
ence between audio and video modes. In [11], each video frame
was segmented into smaller segments which were clustered to form
spatiotemporal moving objects. Audio sources were identified by
correlating Mel Frequency Cepstral Coefficients (MFCC) of the au-
dio using CCA. This approach detects the region of the sound source
but is unable to detect the exact shape of the object effectively for all
videos.

The objective of this work is to localize moving objects in a
video that are correlated to the corresponding audio, using cross-
modal analysis. To accomplish this task, motion features of eigen
moving objects are correlated to audio MFCC. Eigen analysis is used
to identify moving pixels for each frame, which are then used to
identify eigen moving objects. These eigen moving objects are iden-
tified using two methods: Per-frame mapped eigen moving object
PFEMO and Temporally coherent eigen moving object TCEMO. In
particular, PFEMO maps the moving pixels to spatial regions using
superpixel image segmentation on each video frame. These spatial
regions are then merged to form spatio temporal clusters using K-
means clustering. TCEMO uses supervoxel based full video segmen-
tation to obtain eigen moving object. Motion features like mean ve-
locity and acceleration of these clusters are then correlated to MFCC
features using CCA. The maximum correlated cluster is identified as
the moving sounding object.

The key contributions of this paper are as follows: (i) Eigen
analysis has been used as an integral step to identify moving pixels,
which are mapped to spatial motion-regions in a video sequence. (ii)
The proposed methods, PFEMO and TCEMO, reduce the number of
clusters that are correlated with the audio features when compared
to [11], thus increasing the performance of CCA and ensuring higher
precision and recall. (iii) The proposed approach TCEMO, instead
of relying on per frame segmentation of video frames, determines the
improved spatiotemporal clusters using supervoxel based video seg-
mentation. This ensures higher hit ratio and considerably improves
precision, recall and hit ratio when compared to [11].

The paper is organized as follows. Section 2 describes the pro-
posed framework, followed by experimental evaluation in Section 3.
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Fig. 1: Overview of the proposed framework. Top and bottom part of the figure show the results of intermediate steps for PFEMO and
TCEMO respectively on some sample frames of a video.

The learnings from the effort are summarized in Section 4.

2. PROPOSED FRAMEWORK

A brief overview of the proposed work for localizing moving sound-
ing objects using joint audio-video modes is given in Figure 1. On
the whole, the proposed methodology consists of three steps: (i)
video modality representation using eigen moving objects (ii) audio
modality representation and (iii) object localization using correlation
of audio-video modalities.

2.1. Video modality representation using eigen moving object
identification

The idea of using eigenspace modeling is to identify pixels that
contribute to motion in the video. For an input video I1...T com-
prising of T frames, an eigenspace model is formed by taking X
frames with X << T , that captures the stationarity across X im-
ages [14]. Since moving objects constantly change their location
in the X frames, these objects do not contribute significantly to the
eigenspace model as compared to stationary components. Further,
Ii+1 where, (X + 1) ≤ i ≤ T , is reconstructed by projecting onto
the eigenspace using the top L eigen vectors. Moving pixels are
extracted by subtracting the reconstructed frame from the original
frame. A threshold is applied to remove noise from the identified
moving pixels. Once moving pixels are identified, these pixels are
mapped to semantic objects/regions. In particular, two alternative
strategies have been developed that map these pixels to temporally
coherent objects with fine boundaries. These strategies are described
in detail below:

2.1.1. PFEMO-Per frame mapped eigen moving object detection

The identified moving pixels are mapped to regions using superpixel
segmentation on each frame. Video features are extracted from these
regions and correlated to the audio features. Segmentation of the
frames is achieved using a two-pass procedure. In the first pass, each
frame is segmented into a large number of regions (superpixels) us-
ing Simple Linear Iterative Clustering (SLIC) [15]. In the second
pass, Density based (Db) clustering [16] is performed to merge su-
perpixels into regions. The regions containing moving pixels above

a certain threshold are extracted. These regions are referred to as
motion-regions. Figure 1 gives a summary of the proposed method.

These motion-regions across frames are merged into spatiotem-
poral clusters using K-means. Each motion-region is represented
using photometric features, mean velocity and mean acceleration.
Velocity and acceleration for each pixel in motion-regions are com-
puted using optical flow. Let U+(x,y, t) and U−(x,y, t) denote the
optical flow vectors (u,v) between frame Ft -Ft+1 and Ft -Ft−1 respec-
tively, for a pixel location (x,y) at time t. Velocity and acceleration
of each pixel are computed as

vel(x,y, t) =U+(x,y, t)

acc(x,y, t) =U+(x,y, t)− (−U−(x,y, t)) (1)

Each motion-region is then represented by a 11 dimensional feature
vector as R = (µx,µc,µvel ,µacc) where µx is the 2D-mean spatial
coordinate and µc,µvel ,µacc are 3D vectors representing mean color,
velocity and acceleration of the region, respectively. These motion-
regions are then temporally clustered using K-means to form spa-
tiotemporal clusters termed as eigen moving object.

2.1.2. TCEMO -Temporally coherent eigen moving object

We extend the approach of superpixel segmentation used in PFEMO
by using supervoxel segmentation. Supervoxels are analogous to su-
perpixels and extend superpixel segmentation by not only clustering
the pixels in each image but by segmenting a volumetric stack of
images. Besides estimating coherent objects, supervoxels reduce the
input complexity when compared to superpixels. A number of su-
pervoxel based video segmentation algorithms have been proposed
in [17]. For this work, we have used streaming hierarchical seg-
mentation proposed in [18] which is derived from [19]. The advan-
tage of using this algorithm is that it allows a selection of segmen-
tation levels, preserves the region boundaries, and does not require
all voxels in the video to be loaded in memory. Graph-based image
segmentation algorithm builds a graph with each pixel as a node,
connected with 8 neighbors. For streaming hierarchical video seg-
mentation, this graph is built over the spatiotemporal volume with a
26-neighborhood in 3D space-time for current and previous subse-
quences (sequence of consecutive frames from the video) of frames.
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Eigen moving objects obtained by the above techniques are rep-
resented by the average magnitude of velocity and acceleration. A
feature vector of dimension 2M×T is obtained by concatenating M
clusters each of velocity and acceleration in all the frames. While,
for PFEMO, M = K (number of clusters in K-means), for TCEMO,
top M clusters with high standard deviation each from velocity and
acceleration are chosen.

2.2. Audio modality representation

The audio signal has been represented using MFCC [20] and their
derivatives. MFCC are robust features that approximate the human
auditory system. The derivatives capture the temporal evolution of
the audio signal. The dynamics of video are correlated to the dynam-
ics of audio, as they originate from the same physical phenomena.

2.3. Object localization using correlation of audio-video modal-
ities

Once the audio and video features are extracted, the next step is to
identify the regions in the video that are most associated to the audio.
To identify the moving sounding objects, we need to discover the
hidden correspondence between the two modalities. CCA [21] is a
method that determines the correlation between two sets of random
variables of different dimension by projecting them on a common
coordinate system. For two sets represented as u ∈ Rdu and v ∈ Rdv ,
CCA effectively projects to subspace wu ∈ Rdu and wv ∈ Rdv such
that correlation between the pair of random variables wT

u u and wT
v v

is maximized as given below:

ρ = max
wv,wu

E[wT
u uvT wv]√

E[wT
u uuT wu]E[wvT vvT wv]

(2)

where E denotes the expectatoion and ρ denotes the correlation co-
effiecient. The optimal projections are the eigen vectors correspond-
ing to the largest eigen values of the following generalized eigen
systems:

ΣuvΣ
−1
vv Σvuwu = λuΣuuwu

ΣvuΣ
−1
uu Σuvwy = λvΣvvwv

(3)

where wu and wv are the canonical bases of u and v respectively. In
equation 3, Σuv is the cross-covariance matrix of u and v; Σuu and
Σvv denote the covariance matrix of u and v. The eigen vectors wu1
and wv1 corresponds to the largest eigen values λu1 and λv1. Values

above a certain threshold in normalized wu1 are used to localize the
objects corresponding to the most dominant audio source.

Once these objects are localized, a confidence map is created
and the localization confidence is set to 1 for the pixels belonging
to these objects and is set to 0 for the rest. This confidence map is
then convolved with a Gaussian kernel in both spatial and temporal
domains to generate a smooth surface. These regions correspond to
motion in the video that is most correlated to the audio.

3. EXPERIMENTS AND RESULTS

The proposed methods are evaluated over several real-time test video
sequences from [9] and [11]. These videos depict various cluttered
environments and scenarios. In Movie1 video, while the motion of
the hand is correlated to the audio, movement of the horse is un-
correlated. The News video has uncorrelated movements through
highlights, besides the correlated motion of the newsreader's face.
In the Guitar video, the correlated action is guitar strumming, and
the uncorrelated action is the movement of the lady sitting next to
the guitarist. In Violin Yanni (VY), the violin bowing is correlated to
the violin audio. Moreover, in the audio channel of all the videos,
some amount of non-dominant noise is present.

To estimate moving pixels in each frame, a sample size of 6
frames was used for eigen analysis with a threshold of 0.1 for the
removal of noise. Once these pixels were obtained, in PFEMO, to
obtain segments in each frame, number of superpixels, slic param-
eter and compactness were set as 25, 10 and 11 respectively. On
the other hand, in TCEMO, supervoxels were extracted from hier-
archical level 17 with a merging threshold of 10. The audio MFCC
features were extracted using Hamming window with 50% overlap.
A threshold of 0.5 was used to choose eigen moving objects from
CCA. Finally, these objects were localized with a Gaussian kernel of
standard deviation 5.

3.1. Qualitative Evaluation

Figure 3 shows the localization probability of the proposed methods
overlaid on a few original frames. To accurately assess the method,
complete video sequences have been uploaded at the link 1. It is
evident that both the methods have fewer false positives. High local-
ization probability is assigned to regions associated to the audio. In
particular, for Movie-1, our approach detects only the hand through-
out the video. This indicates a significant improvement over the

1https://sites.google.com/site/movingsoundingobjectsresults/home
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Fig. 2: Quantitative Evaluation: Precision and Hit-Ratio for Baseline [11] (BS), PFEMO(M1) and TCEMO(M2) on 4 videos
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baseline method [11], where both the girl and horse are detected.
It can also be observed that fine boundaries for the hand are ob-
tained using TCEMO. Similarly, for Violin-Yanni, the bowing action
is completely detected using both the methods. TCEMO detects the
bow stick completely compared to PFEMO. In the News video, the
newsreader's complete face is detected across all the frames, as com-
pared to the baseline approach. Further, for the Guitar video, the
guitar is detected with high probability when compared to the base-
line method. These inferences are further verified by Mean Opinion
Score (MOS) based subjective measurements of the videos gener-
ated. These evaluations were carried out with 30 viewers using dou-

PCEMO TCEMO Baseline(BS)

1
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3

3.5

4

4.5

5

Similarity score with respect to groundtruth

Fig. 4: Boxplot of MOS for PFEMO, TCEMO and BS [11] on 4
videos

ble stimulus method where viewers are asked to rate video clips on
a scale from 1(Poor) to 5(Excellent) given the ground-truth video
marked by [11] . The boxplot of MOS on similarity to groundtruth
is shown in Figure 4. It is clear from Figure 4 that both the proposed
systems perform much better than the baseline.

3.2. Quantitative Evaluation

Once the probability of every pixel in all the frames is obtained, it is
compared with the ground truth. The performance of each method
is evaluated using Precision, Recall and Hit ratio criteria at different
threshold values on the localized surface of each frame. A hit occurs
in a frame if the precision in that frame is more than 0.5. Hit ratio is

Table 1: Area under the curve in PR and HR curves for baseline(BS)
[11], PFEMO and TCEMO

BS PFEMO TCEMO BS PFEMO TCEMO
VY 0.66 0.80 0.81 0.52 0.94 0.99

Movie1 0.17 0.75 0.87 0.22 0.89 0.98
News 0.81 0.90 0.92 0.74 0.98 0.99

Guitar 0.92 0.85 0.93 0.82 0.95 0.96

defined as the ratio of the number of hits to the number of frames. It
assists in the evaluation of the temporal coherence of moving sound-
ing objects detected. Figure 2 shows localization performance using
precision-recall (PR) and hit ratio (HR) curves for test videos by
varying the threshold from 0 to 1. It is evident that higher values
are achieved for all the metrics over the baseline method for all the
test videos. A significant improvement is obtained by the proposed
approaches for Movie-1 over the baseline method. This is further
corroborated by measuring the area under the PR and HR curves for
the proposed and the baseline methods as shown in Table 1.

4. CONCLUSION

This paper presents a robust and efficient approach to localization
of moving objects that are associated to corresponding audio ob-
tained from a single camera and a single microphone. The pro-
posed methods, namely PFEMO and TCEMO, improve the perfor-
mance over the current state-of-the-art methods for identifying mov-
ing sounding objects. Due to the incorporation of streaming hier-
archical video segmentation, TCEMO gives finer and stable bound-
aries for the moving sounding objects than PFEMO.

The evaluation of our methods clearly indicates that the pro-
posed methods have superior performance when compared to [11].
This can be attributed to two reasons (i) incorporation of eigen anal-
ysis removes the extraneous clusters and hence improves CCA. This
reduces computations and number of parameters when compared to
the method used in [11]. (ii) the proposed segmentation techniques
used in PFEMO and TCEMO improve the boundary of the detected
objects. This is reflected in the precision, recall and hit ratio for
all the test videos. High MOS scores for the proposed systems are
indicative of the improved performance.

Violin Yanni Movie1 News Guitar

20 86 100 200 100 260 124 173

Fig. 3: Qualitative Evaluation:Identification of moving sounding objects on some sample frames for test videos. Results on full video clips
can be found at 1. Top and second rows indicate the ground truth objects in red color and baseline results respectively. Third and fourth
rows depict the moving sounding objects identified using PFEMO and TCEMO respectively. Numbers below the fourth row show the frame
number in the videos. The different colors correspond to the probability of the moving objects with red corresponding to 1.
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Zimek, “Density-based clustering,” Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery, vol. 1, no.
3, pp. 231–240, 2011.

[17] Chenliang Xu and J.J. Corso, “Evaluation of super-voxel meth-
ods for early video processing,” in Computer Vision and Pat-
tern Recognition (CVPR), 2012 IEEE Conference on, June
2012, pp. 1202–1209.

[18] Chenliang Xu, Caiming Xiong, and Jason J Corso, “Streaming
hierarchical video segmentation,” in Computer Vision–ECCV
2012, pp. 626–639. Springer, 2012.

[19] Pedro F. Felzenszwalb and Daniel P. Huttenlocher, “Efficient
graph-based image segmentation,” Int. J. Comput. Vision, vol.
59, no. 2, pp. 167–181, Sept. 2004.

[20] S. Davis and P. Mermelstein, “Comparison of parametric repre-
sentations for monosyllabic word recognition in continuously
spoken sentences,” Acoustics, Speech and Signal Processing,
IEEE Transactions on, vol. 28, no. 4, pp. 357–366, Aug 1980.

[21] Harold Hotelling, “Relations between two sets of variates,”
Biometrika, pp. 321–377, 1936.

2761


