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ABSTRACT

Multimedia event detection (MED) is the task of detecting given
events (e.g. birthday party, making a sandwich) in a large collec-
tion of video clips. While visual features and automatic speech
recognition typically provide the best features for this task, non-
speech audio can also contribute useful information, such as crowds
cheering, engine noises, or animal sounds.

MED is typically formulated as a two-stage process: the first
stage generates clip-level feature representations, often by aggregat-
ing frame-level features; the second stage performs binary or multi-
class classification to decide whether a given event occurs in a video
clip. Both stages are usually performed “statically”, i.e. using only
local temporal information, or bag-of-words models.

In this paper, we introduce longer-range temporal information
with deep recurrent neural networks (RNNs) for both stages. We
classify each audio frame among a set of semantic units called
“noisemes”; the sequence of frame-level confidence distributions is
used as a variable-length clip-level representation. Such confidence
vector sequences are then fed into long short-term memory (LSTM)
networks for clip-level classification. We observe improvements in
both frame-level and clip-level performance compared to SVM and
feed-forward neural network baselines.

Index Terms— Multimedia event detection (MED), noisemes,
recurrent neural networks (RNNs), long short-term memory (LSTM)

1. INTRODUCTION

With the pervasion of cell-phones in daily life and the popularity
of video-sharing websites such as YouTube, recent years have seen
an explosive increase in the number of consumer-produced videos.
However, the means of retrieving videos in such large collections are
still mostly limited to text-based search in human-generated video
metadata or voice captions, rather than the actual content of a video.
Multimedia event detection (MED) aims to solve this problem, most-
ly by fusing information from multiple complementary channels.

While the visual content of video clips (e.g. people, animals, ob-
jects, scenes, actions, and OCR text) often contains the most useful
information for event detection, the audio track can also provide
important clues. The words that people say may directly reveal the
event being shown in a clip. Besides speech (and speech meta-data
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such as emotions, speaker identities, or discourse information), non-
speech sounds often contain additional and complementary audio
information: some sounds are directly related to events, such as the
cheering of the audience in a soccer game; other sounds indicate the
environment in which events happen, such as the buzz of machines
in a factory. Some of this audio information may not even be present
in the visual content.

MED systems usually consist of two stages. In the first stage,
a clip-level representation is generated for each video clip. Such
representations usually come in the form of a vector or a sequence
of vectors, and are often an aggregation of frame-level features. In
the second stage, binary or multi-class classifiers are built for the
target events, taking the clip-level representations as inputs.

Two approaches have been shown to be the most successful
in audio-based MED. The first approach is inspired by speaker
identification techniques. The frame-level acoustic features (such as
MFCCs) of a video clip are modeled by a Gaussian mixture model
(GMM). The mean vectors and the diagonals of the covariance ma-
trices of a GMM are concatenated to yield a “supervector” [1], which
is used as the clip-level representation, such as in [2]. Optionally,
“i-vectors” [3] maybe extracted from the supervectors in order to
capture most of the variability in a smaller number of dimensions,
such as in [4]. The supervectors or i-vectors may be fed into
any general-purpose classifier to perform clip-level classification.
The second approach is inspired by topic classification in natural
language processing. A “vocabulary” is learned by quantizing the
frame-level acoustic features, and each video clip is represented by
a bag-of-audio-words (BoAW) vector [6]. These vectors may either
be classified by general-purpose classifiers, or modeled with latent
Dirichlet allocation (LDA) [7], treating each event as a topic.

In both the i-vector and the BoAW approaches, temporal in-
formation is not fully exploited: the frame-level feature extraction
only makes use of local context, and the clip-level representation
ignores the order of the frames altogether. Various ways have been
suggested to compensate for this loss. Instead of building clip-level
representations upon the features of single frames, researchers have
proposed short, semantically meaningful audio segments as the units
of building clip-level representations. These units may be either
learnt in an unsupervised fashion [8, 9] or defined by humans [10].
The semantic units are usually modeled with hidden Markov models
(HMMs), which exploits the temporal information within a unit. In
order to make use of temporal information across units, people have
included bigram and long-distance co-occurrence counts in the clip-
level representation [8], or incorporated a language model of the
semantic units during event classification [9].

As deep neural networks (DNNs) are gaining popularity in
recent years, researchers have started to apply them to the task
of multimedia event detection as well. Since neural networks are
mostly used for supervised classification, studies of MED using
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neural networks have mainly focused on frame-level classification of
human-defined semantic units. In [11], a deep neural network was
used to distinguish between four semantic units; a larger repository
of 61 semantic units were dealt with in [12] and [13]. In [14]
and [15], deep neural networks were used not only for frame-level
classification but also for clip-level detection. While deep neural
networks are displaying their strong power in the classification
tasks, the networks used in the works above all had a feed-forward
structure without temporal recurrency, and therefore did not make
full use of temporal information, such as the repetitive structure of
many sounds, or typical sequences of sounds.

In this paper, we try to combine the classification power of deep
neural networks and the temporal information by using deep recur-
rent neural networks (RNNs). We adopt a set of semantic units that
have interpretable and descriptive meanings, called “noisemes” and
first introduced in [10], and classify each frame among 17 noisemes
with a deep bidirectional recurrent neural network (BRNN). The
sequence of noiseme confidence vectors is directly used as the clip-
level representation without pooling it into a single vector, and a
deep recurrent neural network with long short-term memory (LSTM)
cells is used to make clip-level predictions. In both stages, the
recurrent neural networks outperform the baseline of feed-forward
neural networks.

2. DEEP RNNS AND LSTM NETWORKS

Deep neural networks (DNNs) are powerful general-purpose models
for classification and regression. The simplest networks have a feed-
forward structure, as shown in Fig. 1(a). Each block denotes a
layer, which computes a vector. The hidden layers and the output
layer multiply their input vector with a weight matrix, and apply a
non-linear activation function to produce an output vector. Typical
activation functions include sigmoid (y = 1/(1 + e−x)), tanh
(y = tanh(x)), and ReLU (y = max(x, 0)). It is this non-
linearity that gives neural networks their incredible learning power.
The weight matrices are the parameters of the network. They can
be trained with the gradient descent method (or, more commonly,
stochastic gradient descent with minibatches), and the gradients can
be calculated with the error back-propagation algorithm [16].

Feed-forward networks require a fixed-size input, and cannot
deal with sequential data of variable length. Recurrent neural
networks (RNNs, Fig. 1(b)) were invented to solve this problem.
The same feed-forward structure is copied for each time step, and
the hidden layers of adjacent time steps are also connected with
weight matrices that share the same value across time steps. The
prediction at any time step can now make use of information in
the entire history. RNNs can also be trained with gradient descent;
the algorithm to compute the gradients is called back-propagation
through time (BPTT) [17], and is essentially the same as back-
propagation for feed-forward networks.

Sometimes it is desirable to use information not only from the
past but also from the future, and this is when bidirectional recurrent
neural networks (BRNNs) [18] are useful. In a BRNN, each hidden
layer consists of a forward chain and a backward chain going in
opposite directions (see Fig. 1(c)). The input and output layers
are connected to both chains; both chains in each hidden layer are
connected to both chains in the next hidden layer. With this structure,
information can flow freely in both directions in the network.

Even though in theory (bidirectional) RNNs can make use of
information in the distant past (and future), in practice this is hard
to achieve due to a problem called vanishing or exploding gradient
[19]. This happens because when the error signal is back-propagated

(a) Feed-forward (b) Recurrent neural networks (RNN)

(c) Bidirectional recurrent neural networks (BRNN)

(d) LSTM cell (peephole connections, indicated by
dashed arrows, are not used in this paper)

Fig. 1. The structures of deep feed-forward networks, deep recurrent
networks, deep bidirectional recurrent networks, and the LSTM cell.

through the network, it gets multiplied with the weight matrices
as many times as there are time steps, and amplified or attenuated
depending on the magnitude of the weights. To avoid this problem,
the simple non-linearity blocks of RNNs can be replaces by long
short-term memory (LSTM) cells [20], whose structure is shown in
Fig. 1(d). Each memory cell interacts with the surroundings via a
set of gates, and their content can be retained for a long time. The
memory cells of adjacent time steps are connected with a constant
weight of 1, so the error signal does not explode or vanish during
back-propagation. LSTM networks have been shown to perform
well on tasks where long-range memories are necessary. LSTM
networks can also be made bidirectional.

Implementing the error back-propagation algorithm can be com-
plicated, especially for LSTM networks. Luckily, the symbolic
derivation functionality of the Theano toolkit [21] takes care of it.
The toolkit also provides transparent access to graphical processing
units (GPUs), which can speed up the training of neural networks
significantly with parallel computation. Most of our experiments
were run on NVIDIA K20 and K80 GPUs.

In the experiments, we describe the size of neural networks as
h × n, e.g. 100×2. The number n indicates the number of hidden
layers; the number h indicates the size (i.e. vector length) of the
hidden layer at each time step and in each chain (in the case of
bidirectional networks).
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Fig. 2. Duration of each noiseme in the corpus. “speech ne” means
“non-English speech”.

3. FRAME-LEVEL NOISEME CLASSIFICATION

Our first step toward event detection was to classify audio frames
into semantic units called “noisemes”. We conducted frame-level
noiseme classification on the “noiseme” corpus [10], which consists
of 388 video clips, totaling 7.9 hours. The original annotation
contains 48 noiseme classes; we manually merged some rare and
semantically close classes (e.g. “laughing”, “crying”, “screaming”
and “child noises” were merged into “human noises”), and ended up
with 17 noisemes (plus a “background” class). The duration of each
noiseme in the corpus is shown in Fig. 2. Note that the total length
of the bars in Fig. 2 (10.5 h) is longer than 7.9 hours; this is because
nearly a third of the duration is labeled with more than one noiseme.

The corpus was divided into training / validation / test sets with
a duration ratio of 3:1:1. This was not a trivial task, since we needed
to make sure that the duration of each noiseme in the three sets
also formed a ratio of 3:1:1. We tried to find such a partitioning
with a stochastic algorithm: starting from a random partitioning,
we iteratively tried moving a random video clip to a different set,
until no such moves could bring the ratio closer to 3:1:1. With
1000 random starts, we were able to find a partition such that for
each noiseme, the percentage of duration contained in the three sets
deviated from 60%, 20%, and 20% by less than 1%.

We extracted acoustic features using the OpenSMILE toolkit
[22]. We first extracted low-level features such as MFCCs and F0

(fundamental frequency), and then computed a variety of statistics
over these raw features using sliding windows of 2 seconds moving
100 ms at a time. This procedure yielded feature vectors with 6,669
dimensions; we selected 983 dimensions using the information gain
criterion. This is the same acoustic feature as used in [23].

As a baseline, we built a deep feed-forward neural network
to perform 18-way classification. The hidden layers used the Re-
LU activation; the output layer contained 18 nodes in a softmax
group. We used cross entropy (L = −

∑N
i=1 log p(yi)) as the

objective function. To accommodate frames with multiple labels,
the predicted probability of the target class p(yi) was replaced by
the total predicted probability of all the target classes. We chose the
frame accuracy as the evaluation metric; a frame was considered as
correctly classified as long as one of the target classes had the highest
predicted probability.

We trained the network using the stochastic gradient descent
algorithm with the Nesterov accelerated gradient [24]. The batch
size was 2,500 frames. We adopted an adaptive learning rate
schedule: when the validation error rate decreases by more than 1%
relative in an epoch, the learning rate is increased by 5%; when the
validation error rate decreases by less than 0.5% relative, the learning
rate is decreased by 20%; training is terminated when the validation
error rate decreases by less than 0.1% relative in 5 consecutive

Type Size # Params Init LR Test Accuracy (%) Ave.(%)
DNN 500×2 0.75M 0.005 45.5 45.2 45.2 44.7 45.1
RNN 500×1 0.75M 0.002 45.3 48.0 45.7 46.2 46.3

BRNN 300×2 1.32M 0.002 46.0 47.2 48.1 46.9 47.0
LSTM 300×1 1.55M 0.005 44.7 46.5 46.3 47.6 46.3

BLSTM 300×1 3.09M 0.005 47.0 48.2 46.8 45.0 46.7

Table 1. The optimal configuration and test frame accuracy of vari-
ous types of neural networks (LR: learning rate; optimal momentum
coefficient was 0.9 for all network types).

epochs. Regularization and dropout [25] were not used, as we did
not find them helpful for this task. For each network configuration,
we ran the training four times from different random initializations.

We obtained the best test frame accuracy of 45.5% with a
500×2 feed-forward network, an initial learning rate of 0.005, and a
momentum coefficient of 0.9. The network had 0.75M parameters.
For comparison, a support vector machine (SVM) classifier using
the linear kernel achieved a test frame accuracy of 41.5%.

Next, we trained unidirectional and bidirectional recurrent neu-
ral networks with either plain ReLU units or LSTM units. We
broke all the training clips down to sequences no longer than 500
frames, putting the cutting points in the middle of contiguous “back-
ground” frames as much as possible. Each minibatch consisted of
5 sequences, which is comparable to the batch size of 2,500 frames
for the feed-forward network. The hyper-parameters of the optimal
configuration of each network type can be found in Table 1.

Table 1 also lists the test accuracies of the four runs as well the
average test accuracy for each type of neural network. From the av-
erage test accuracy, we can see that introducing recurrency produced
1% of improvement, and that introducing temporal memory on both
sides yielded another 1%. LSTM cells did not perform better than
plain ReLU units; this is probably because classifying a frame does
not require memory from a long distance away.

4. CLIP-LEVEL EVENT DETECTION

Frame-level noiseme classification provides a preliminary under-
standing of the content of video clips, and forms a basis for clip-level
event detection. We conducted clip-level event detection on the de-
velopment data of the TRECVID 2011 Multimedia Event Detection
(MED) evaluation [26], which was also used in [2, 7, 23, 27]. The
corpus consists of 3,104 training video clips and 6,642 test video
clips. A few of the clips do not contain an audio track; we excluded
them from our experiment. Some of the videos are labeled with one
out of 15 events, listed in Table 2; others are “background” videos.
The test set contains more background videos than the training set.
We reserved one quarter of the training clips for validation, ensuring
that the proportion of each event in the validation set and the rest
training set remained the same.

We extracted the same 983-dimensional acoustic feature as
in Sec. 3. Then, using the bidirectional RNN that achieved a
48.1% frame accuracy, we transformed the acoustic features into 18-
dimensional “noiseme confidence vectors”. The sequence of such
vectors was used as the clip-level representation of video clips.

As a baseline, we built one feed-forward neural network for
each event type to perform clip-level binary classification. Since
feed-forward neural networks require a fixed-size input, we took
the mean of the noiseme confidence vectors across all the frames.
Note that all temporal information is lost in this operation! Hidden
layers of the neural network used the ReLU activation, and the
output layer consisted of a single sigmoid node to yield a confidence
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ID Event Train% Test%
E001 Attempting a board trick 5.23 1.71
E002 Feeding an animal 5.23 1.71
E003 Landing a fish 3.92 1.30
E004 Working on a woodworking project 4.10 1.33
E005 Wedding ceremony 4.58 1.53
E006 Birthday party 2.88 1.33
E007 Changing a vehicle tire 1.83 0.83
E008 Flash mob gathering 2.88 1.33
E009 Getting a vehicle unstuck 2.09 1.02
E010 Grooming an animal 2.22 1.07
E011 Making a sandwich 2.01 0.96
E012 Parade 2.22 1.02
E013 Parkour 1.83 0.80
E014 Repairing an appliance 2.05 0.94
E015 Working on a sewing project 1.96 0.88

Table 2. The 15 events used in the MED experiment, and their
proportion in the training and test sets.

score between 0 and 1 for the event. Cross entropy was still used
as the objective function; average precision (AP) was adopted as
the evaluation metric. The average precision evaluates the quality
of a ranking. Sort the test instances by their confidence scores in
descending order, and suppose the i-th positive instance is ranked
at the ri-th position (we broke ties by always ranking negative
instances higher). The average precision is defined as

AP =
1

n

n∑
i=1

i

ri
(1)

where n is the total number of positive test instances. The mean of
the AP across all events is called the mean average precision (MAP).

The feed-forward network was trained using gradient descent;
since there were only 2,294 training instances, these were not
divided into minibatches. The same adaptive learning rate schedule
was used as in Sec. 3. An optimal MAP of 4.0% was obtained with
a 200×2 feed-forward network, an initial learning rate of 0.3, and
a momentum coefficient of 0.9. This MAP value falls behind the
numbers reported in [23], but it is still a lot better than random
guessing (in which case the MAP will be the average percentage
of positive test instances across the events, which is 1.2%).

Clip-level event detection is a task where long-term memory
may be desirable: the network needs to remember the order in
which noisemes occur, but the noisemes themselves and/or the gaps
between them may last for an indefinite duration. We trained a deep
LSTM network with the same hyper-parameters as the baseline feed-
forward neural network. A difference from the LSTM network we
trained in Sec. 3 was that target labels were only provided at the last
frame of each sequence.

In this procedure we encountered a number of difficulties. The
first difficulty was the wide range of sequence lengths: the shortest
sequence had only 37 frames, while the longest one had more than
20,000 frames. This not only meant too much data to process, but
also made it hard to form minibatches. We shortened all sequences
whose length l was greater than 50 to m = 50

√
l/50 frames, by

dividing the original sequence evenly into m segments and taking
the average within each segment. This operation loses some local
temporal information for long sequences, but keeps the long-range
temporal information.

Training the LSTM network directly with these shortened se-
quences did not beat the feed-forward baseline. We suspect that
this was because it was hard for the LSTM to find a good local
optimum with as little supervision as one frame per sequence. We

Fig. 3. The per-event average precision of various networks types.

devised a multi-pass training strategy to lead the LSTM along a good
path. In the first pass, we shortened all the sequences to 1 frame
and trained the LSTM network with them, which was equivalent
to training a feed-forward network. In each subsequent pass, we
trained the LSTM network with sequences shortened to twice the
length in the previous pass, starting with a learning rate that was
α = 5 times the learning rate when the last pass converged. Each
pass can be considered as a pre-training for the next pass. After the
pass of training with sequences of length 512, we finally fine-tuned
the network with the original sequences of variable lengths m.

We observed that the average precision improved for most events
during the multi-pass training (especially when the sequence length
was around 32), but in the last few passes, the AP fell back to the
baseline value or even lower. A closer inspection revealed that this
happened because the learning rate multiplier α = 5 was too large
for the last few passes, and caused the training to diverge. Yet this
large multiplier was necessary for the initial passes to encourage
the network to explore better regions in the parameter space. This
indicates that a more intelligent way of controlling the learning rate
is desirable.

If we stopped the multi-pass training after the pass that reached
the highest test AP for each event, we did observe an improved MAP
of 4.6%, as shown in Fig. 3. This confirms that LSTM networks are
able to exploit temporal information for event detection. We believe
that the potential of LSTM networks can be brought out to a fuller
extent if the learning rate was controlled better.

5. CONCLUSION AND FUTURE WORK

We have demonstrated that deep recurrent neural networks (RNNs)
can make use of temporal information to help both the frame-level
and clip-level classification stages of multimedia event detection
(MED). Using a deep bidirectional recurrent neural network (BRN-
N), we achieved an improvement of 1.9% absolute in the frame
accuracy of noiseme classification; using a deep LSTM network,
we improved the mean average precision (MAP) of event detection
by 0.6% absolute. The second improvement is still limited by the
strategy of controlling the learning rate during network training.

There remains a lot of work to do for both frame-level noiseme
classification and clip-level event detection. The noiseme corpus,
with 7.9 hours of audio, does not contain enough data to train a
reliable classifier for all the 48 types of labeled noisemes. We plan
to augment the corpus in a semi-supervised fashion, by iteratively
predicting noisemes on more data and incorporating the relatively
confident parts into the training set. For event detection, we need
to develop a more robust strategy to control the learning rate, so
that LSTM networks can fully benefit from the temporal information
contained in the sequences.
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