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ABSTRACT
Transfer learning methods have demonstrated state-of-the-
art performance on various small-scale image classification
tasks. This is generally achieved by exploiting the infor-
mation from an ImageNet convolution neural network (Im-
ageNet CNN). However, the transferred CNN model is gen-
erally with high computational complexity and storage re-
quirement. It raises the issue for real-world applications,
especially for some portable devices like phones and tablets
without high-performance GPUs. Several approximation
methods have been proposed to reduce the complexity by
reconstructing the linear or non-linear filters (responses) in
convolutional layers with a series of small ones.

In this paper, we present a compact CNN transfer learn-
ing method for small-scale image classification. Specifically,
it can be decomposed into fine-tuning and joint learning
stages. In fine-tuning stage, a high-performance target CNN
is trained by transferring information from the ImageNet
CNN. In joint learning stage, a compact target CNN is opti-
mized based on ground-truth labels, jointly with the predic-
tions of the high-performance target CNN. The experimental
results on CIFAR-10 and MIT Indoor Scene demonstrate the
effectiveness and efficiency of our proposed method.

Index Terms— CNN, Transfer Learning, Image Classifi-
cation

1. INTRODUCTION

Recently, deep convolutional neural networks (CNN) have
achieved outstanding performance in large scale visual recog-
nition competitions [1]. Generally, the deep CNN structure
can be decomposed into (1) convolutional layers, which per-
form non-linear feature extraction via convolution, rectified
linear units (ReLU), and max-pooling operations, and (2)
fully connected layers, which map the extracted features into
posterior probabilities. It is known that the powerful model-
ing capability of deep CNN mainly comes from its complex
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structure with millions of parameters tuned with large-scale
labeled dataset like ImageNet [2].

However, for small-scale datasets, e.g. MIT Indoor
Scene [3], the complexly structured CNN may be prone to
over-fitting, leading to reduced performance. In such cases,
several recent works indicate that it is preferable to transfer
a previous well-trained CNN rather than to train a new CNN
with limited labeled data. For example, Razavian et.al. con-
ducted a series of experiments for various recognition tasks
using CNN features as generic image representation [4].
Chatfield et.al. compared the results of using CNNs with var-
ious structures, e.g. CNN-F, CNN-M and CNN-S [5]. In [6],
Girshick et.al showed that CNN fine-tuning scheme can yield
a significant performance boost. In [7], the transferability
of features from different layers has been comprehensively
evaluated. The effectiveness of CNN fine-tuning schemes has
been validated on similar tasks.

Despite the superior performance of transferred CNNs,
the high computational complexity and storage requirement
make it difficult to apply them in real-world systems, espe-
cially for some portable devices, such as mobile phones and
tablets without high-performance GPUs. So, it is of practical
importance to improve CNN efficiency without reducing per-
formance. Several approximation methods were developed to
reconstruct linear filters or responses with a series of smaller
ones [8, 9]. In [10], Zhang et.al proposed to minimize the
reconstruction error of non-linear responses, which is subject
to a low-rank constraint. These methods mostly focus on the
convolutional layers of CNNs.

In this paper, we propose a compact transfer learning
scheme for small-scale recognition tasks, as shown in Fig 1.
Given a pre-trained CNN for source task (i.e. ImageNet),
the transferring process can be decomposed into fine-tuning
and joint learning stages. In the fine-tuning stage, a high-
performance CNN model on the target dataset, such as MIT
Indoor Scene and CIFAR-10, is fine-tuned by transferring
the parameters of internal layers from a pre-trained CNN. In
the joint learning stage, a compact CNN model that satisfies
the complexity and storage requirement is firstly designed,
and then optimized with an objective function which ex-
ploits the information lying in the output probabilities from
the high-performance CNN. This may enforce the compact
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Fig. 1. The illustration of our CNN transfer learning
method. (i) fine-tuning stage. A target network Θ1 is con-
figured and optimized by transferring all internal layers from
source network Θ0. This network is then fine-tuned on the
small-scale target dataset. (ii) joint learning stage. A com-
pact target network Θ2 is optimized with an objective func-
tion which exploits the information lying in the output proba-
bilities from network Θ1.

CNN model to make the prediction similar as that of the
high-performance CNN. To evaluate the effectiveness of the
compact CNN transfer learning method, we conducted exten-
sive experiments on CIFAR-10 and MIT Indoor Scene [11],
achieving competitive image classification performance with
low complexity model.

2. METHOD

This section introduces our compact CNN transfer learn-
ing method, which consists of fine-tuning and joint learning
stages as shown in Fig. 1. We assume that there is an L layer
CNN pre-trained on large-scale ImageNet (ImageNet CNN),
which is denoted as Θ0 = [θ10, . . . , θ

l
0, . . . , θ

L
0 ], where θl0

denotes the parameters of l-th layer.

2.1. Fine-tuning

In the fine-tuning stage, our goal is to adapt the pre-trained
ImageNet CNN Θ0 to the target dataset X = {xn}Nn=1

with labels Y = {yn}Nn=1. Let us define the target net-
work as Θ1 = [θ11, . . . , θ

l
1, . . . , θ

L
1 ]. The internal parameters

θ11, θ
2
1, . . . , θ

L−1
1 are initialized by transferring parameters

from Θ0, while the output layer θL1 is randomly initialized.
The model parameters Θ1 are optimized according to the loss
function L(g(X; Θ1), Y ), where g(X; Θ1) is the prediction
of target network, L(g(X; Θ1), Y ) is the cross entropy loss:

L(g(X; Θ1), Y ) =

N∑
n=1

L(g(xn; Θ1),yn)

= −
N∑

n=1

yn · logpn (1)

where pn = g(xn,Θ1) is the posterior probability vector
[p1n, . . . , p

i
n, . . . , p

C
n ], C is the number of classes. The proba-

bility pin of input xn on i-th class is typically computed using
“softmax” operation:

pin =
exp(vin)∑C
j=1 exp(v

j
n)

(2)

where vin is the input of “softmax” layer, corresponding to the
i-th class in target task. The gradient of the “softmax” layer
can be computed as

∂L(g(xn; Θ1),yn)

∂vn
= pn − yn (3)

The gradients of the other layers can be calculated in the
conventional way as illustrated in [12]. In Section 3, it is
shown that this fine-tuning method can achieve excellent
performance on small-scale target image classification tasks.
However, the computational complexity and storage con-
sumption are too high for resource-constrained applications.

It is straightforward to reduce the complexity of Θ1

by transferring less parameters from network Θ0. Specifi-
cally, a compact target CNN model can be defined as Θ2 =
[θ12, θ

2
2, . . . , θ

L
2 ], in which the first k layers [θ12, θ

2
2, . . . , θ

k
2 ], k <

L − 1 are configured by transferring the corresponding pa-
rameters in Θ0. The remaining layers are configured with
much less node weights than those of Θ1. In implementation,
we set k = 5. In this case, θk+1

0 is the first fully connected
layer which contains most parameters in ImageNet CNN Θ0.

Furthermore, a less complex ImageNet CNN can be used
for CNN fine-tuning, for instance, CNN-F in [13] with 4 pixel
stride in the first layer has a reduced number of convolutional
layers. In Section 3, we evaluate the performance of different
compact target CNNs.

With the fine-tuned compact target CNN model, the com-
putational complexity and model size can be greatly reduced
at the cost of a significant performance degradation. To ad-
dress this issue, we propose a joint learning method to further
improve the performance of this compact target CNN.

2.2. Joint learning

As aforementioned, we aim to improve the performance of the
compact target model Θ2 by jointly training with ground truth
labels and predictions of the target model Θ1. The objective
function of joint learning is re-formulated as

(1− α)L(g(X; Θ2), Y ) + αL(g(X; Θ2), g(X; Θ1)) (4)

In addition to the cross entropy with ground truth labels,
a cross entropy with the soft targets (predictions) from the
model Θ1 is added as a regularization term, where the param-
eter α controls the degree of regularization.

This may force the model Θ2 to generate similar predic-
tions as those from the model Θ1. Similar as eqn.(1), the
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regularization term can be defined as

L(g(X; Θ2), g(X; Θ1)) =

N∑
n=1

L(g(xn; Θ2), g(xn; Θ1))

= −
N∑

n=1

pn · logqn (5)

where pn = g(xn; Θ1) and qn = g(xn; Θ2) are posterior
probability vectors computed using a “softmax” operation.
The gradient of the regularization term can then be written
as

∂L(g(xn; Θ2), g(xn; Θ1))

∂zn
= qn − pn (6)

where zn = [z1n, z
2
n, . . . , z

C
n ] is the input vector of “softmax”

layer in model Θ2. By combining eqn.(6) and similar “soft-
max” gradient equation of zn, the gradient of objective func-
tion in eqn.(4) can be obtained as

(1− α)(qn − yn) + α(qn − pn) (7)

In [14], an extra parameter T was introduced as the temper-
ature to control the softness of probability distribution over
classes. With the revised “softmax” operation, eqn.(6) can be
rewritten as

∂L(g(xn; Θ2), g(xn; Θ1))

∂zn
=

1

T
(qn − pn) (8)

Eqn.(8) adjusts the gradient by changing T. After the gradi-
ent is acquired, we use back propagation (BP) and stochastic
gradient descent (SGD) algorithms to update model Θ2.

3. EXPERIMENT AND ANALYSIS

3.1. Datasets

In our experiments, we evaluate the performance of our
proposed compact CNN transfer learning method on CIFAR-
10 [15] and MIT Indoor Scene [3].
CIFAR-10 Dataset is a small-scale object classification
dataset. This dataset contains 60000 images with 10 ob-
ject categories. Each class consists of 6000 images, including
5000 training images and 1000 test images. The size of each
image is 32×32.
MIT Indoor Scene Dataset contains 6700 images with 67
scene categories. For each category, the standard training/test
set consists of 80 training and 20 test images. This dataset
is quite challenging since most scenes are collections of ob-
jects organized in a highly variable layout, with some subtle
cross-category differences. Furthermore, the difference be-
tween this dataset and ImageNet is greater than that between
CIFAR-10 and ImageNet, which may help to assess the gen-
eralization capability of our proposed method.

3.2. Experiment Settings

Computing Environment. All of our experiments were per-
formed on a server with Intel Xeon E5-2650 and NVIDIA
Tesla K40m installed. The MatConvNet toolbox [12] is used
for evaluation in experiments.
Data Augmentation. The images are augmented as follows.
For MIT Indoor Scene, 224 × 224 patches are cropped from
random positions in images. These images are resized by
original aspect ratios and their minimum dimension is 256.
For CIFAR-10, we do not crop images. The patches and im-
ages are randomly flipped before feeding into the model.
Network Structures. We use ImageNet CNN structures
CNN-S and CNN-F in [13]. CNN-S is an “accurate” model
related to OverFeat [16]. CNN-F is a “fast” model similar
to the structure of Krizhevsky et.al [1], but with larger stride
and fewer convolutional layers.
Training Methods. In our experiments, we implement and
compare the following methods:
1) baseline (Base): Training on small-scale dataset directly.
2) fine-tuning1 (FT1): Fine-tuning a CNN with all inter-
nal layers transferred from ImageNet CNN. 3) fine-tuning2
(FT2): Fine-tuning a compact CNN with all convolutional
layers transferred from ImageNet CNN and smaller fully
connected layers. 4) fine-tuning2+joint learning (FT2+JL):
Optimizing a compact CNN trained by Fine-tuning2 using
the objective function in eqn.(4). We use the “CNN-S FT1”
model as the target model Θ1.
Evaluation. The performance on the target task is evaluated
in terms of accuracy. For CIFAR-10, one prediction of each
image is used for evaluation, while for the MIT Indoor Scene
database, the average of the predictions on 18 cropped patches
is used. Furthermore, storage consumption is evaluated in
terms of network size (MB) and computational complexity in
terms of test speed (images/sec).

3.3. Experimental results on CIFAR-10 dataset

The experimental results are shown in Table 1. Compared
to CNN-S FT1, our method CNN-S FT2+JL and CNN-F
FT2+JL reduce its model size by 83% and 93%, while accel-
erate test speed by 43% and 138% at the cost of slight accu-
racy decrease (less than 1% for both).

Furthermore, we compare the proposed method with other
reported systems, as shown in Table 2. Deeply-Supervised
Net [17] introduces “companion” objective functions at each
individual hidden layer to improve network training. Network
in Network [18] uses mlpconv layers to enhance model dis-
criminability for local patches. DropConnect [19] sets a ran-
domly selected subset of weights to zero to regularize large
fully-connected layers. These leading methods also bene-
fit from complex data augmentations like cropping, flipping,
scaling and rotation. In comparison, our method achieved the
best performance only with flipping operation. Further im-
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provement can be obtained by a more complex data augmen-
tation.

Table 1. Performance comparison of different CNN models
on CIFAR-10 datset, in terms of accuracy (%), size (MB), and
speed (images/sec)

method accuracy size speed

CNN-S Base 87.78 377 122CNN-S FT1 94.64
CNN-S FT2 93.74 62 174CNN-S FT2+JL 94.05
CNN-F Base 87.57 217 244CNN-F FT1 93.27
CNN-F FT2 92.86 27 290CNN-F FT2+JL 93.74

Table 2. Performance comparison with other state-of-the-art
methods on CIFAR-10 in terms of accuracy(%)

method accuracy(%)

CNN-S FT1 94.64
CNN-S FT2+JL 94.05
CNN-F FT2+JL 93.74
Deeply-Supervised Net [17] 92.03
Network in Network [18] 91.19
DropConnect [19] 90.68
Maxout Network [20] 90.62

3.4. Experimental results on MIT Indoor Scene

The experimental results on MIT Indoor Scene dataset shows
the same trend on MIT Indoor Scene, as shown in table 3.
Compared to CNN-S FT1, our method CNN-S FT2+JL and
CNN-F FT2+JL reduce model size by 51% and 74%, while
accelerate test speed by 20% and 105%. Meanwhile, these
two methods achieve accuracy improvements by 25% and
24.8%, compared to baseline method.

A comparison of our method with other leading methods
on MIT Indoor Scene is shown in table 4. The performance
of our proposed compact CNN transfer learning, i.e. 71.4%
for CNN-S FT2+JL and 68.2% for CNN-F FT2+JL, is com-
petitive with them. The best performance is achieved by FC8
FV method [21], which uses a bag of semantic Fisher Vector
multi-scale patches extracted from a pre-trained ImageNet
CNN. It is with high computational complexity and storage
for Fisher Vector embedding on extracted CNN features.
Furthermore, the performance of our compact CNN transfer
learning can be improved by using multi-scale patches.

Table 3. Performance comparison of different CNN mod-
els on MIT Indoor Scene datset, in terms of accuracy (%),
size (MB), and speed (images/sec)

method accuracy size speed

CNN-S Base 46.42 378 122CNN-S FT1 73.13
CNN-S FT2 63.88 185 147CNN-S FT2+JL 71.42
CNN-F Base 43.43 217 244CNN-F FT1 67.84
CNN-F FT2 61.87 97 250CNN-F FT2+JL 68.21

Table 4. Performance comparsion with other reported state-
of-the-art methods on MIT Indoor Scene in terms of accu-
racy(%)

method accuracy(%)

CNN-S FT1 73.13
CNN-S FT2+JL 71.42
CNN-F FT2+JL 68.21
FC8 FV [21] 72.86
FC7 FV [21] 69.7
FC7 VLAD [22] 68.88
ImageNet finetune [6] 63.9
OverFeat + SVM [4] 69
FC6 + Sparse Coding [23] 68.2
Decaf [24] 59.5

4. CONCLUSIONS

In this paper, we presented a compact CNN transfer learn-
ing method for small-scale image classification tasks. The
compact CNN transfer learning method includes fine-tuning
and joint learning stages. In fine-tuning, a high-performance
CNN trained on the target dataset is fine-tuned by transfer-
ring the parameters of internal layers from a pre-trained CNN.
In the joint learning stage, a compact CNN that satisfies the
complexity and storage requirement is firstly designed with
reduced fully connected layers, and then optimized with an
objective function according to posterior probabilities from
the high-performance CNN model.

The experimental results clearly demonstrate the effec-
tiveness and efficiency of our method. The classification ac-
curacy of 94.1% on CIFAR-10, and 71.4% on MIT Scene
have been achieved by using the transferred compact CNN
model with more than 1.2x speedup. With a more compact
target CNN model (i.e. CNN-F FT2+JL), the classification
accuracy may slightly degrade to 93.7% on CIFAR-10, and
68.2% on MIT Indoor Scene, with more than 2x speed up.
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