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ABSTRACT

Most instance search systems are based on modeling local
features. It remains a challenge to apply deep learning tech-
niques into this task because of the asymmetrical similarity
between the query region and dataset images. In this pa-
per, we propose ALADDIN, A Locality Aligned Deep moDel
for INstance search. This model deals with the asymmetrical
similarity by searching query instances at the scale of aligned
target regions instead of the whole image. Towards discrimi-
native region representations, we utilize a deep convolutional
network which captures both intra-class and inter-class dis-
tinctions of the regions. In addition, we propose a semi-
supervised method to collect appropriate data to train the net-
work. Extensive experiments confirm that our method is more
suitable for generic instance search than most conventional
methods, and outperforms the best CNNs-based method in
both accuracy and efficiency.

Index Terms— Deep learning, asymmetrical similarity,
object proposal, intra-class distinction, instance search

1. INTRODUCTION

Instance search (aka object search) aims at retrieving the im-
ages including object or scene similar to the given query re-
gion. It remains a challenging task mainly due to two prob-
lems: 1) Robust image representation: The same object may
appear quite different because of viewpoint, illumination, oc-
clusion and so on; 2) Asymmetrical search [1]: The query ob-
ject may cover only a small part of a dataset image, therefore
the real signal on the relevant region will drown in the noise
from the background. For example, consider the problem of
retrieving all the scenes that contain “Oxford Magdalen Tow-
er” in Figure 1. The Tower is surrounded by a significant
amount of clutter and the visual object varies largely due to
different viewpoints and illumination. Therefore, learning a
robust visual representation for objects and eliminating the
impact of cluttered background are keys to accurate instance
search.
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(b) Query objects in dataset images
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Fig. 1. TIllustrations of asymmetrical search. The query re-
gion, which is delimited by a bounding box, may cover only
a small part in relevant dataset images.

Most recent instance search systems [2][3][4] rely on lo-
cal features such as SIFT to deal with appearance variation-
s, and then design image similarity functions to discount for
the clutter. For example, Zhu [1] proposed an asymmetri-
cal dissimilarity to down-weight the contribution of local fea-
tures from background. Tao [5] considered many boxes per
database image as candidate targets to search locally in the
picture. Although these local features-based methods are suc-
cessful in several applications, their performance is quite lim-
ited due to the representation ability of the hand-crafted fea-
tures. Besides, local features are incapable of describing s-
mall or smooth objects [6], which largely exist among natural
images.

Deep learning based methods have improved the state-of-
art of many recognition tasks such as image classification [7]
and object detection [8]. Moreover, Wang [9] and Wan [10]
showed that convolutional neural networks (CNNs) are effec-
tive in image representation for content-based image retrieval
(CBIR). However, instance retrieval is more difficult — dis-
counting for background variations would require training on
a very large specific dataset which is presently not available.
To address this issue, Razavian [1 1] proposed to divide the
query and dataset images into fixed sub-regions and ranked
the dataset images based on the best-matched sub-regions.
However, it lacks the invariance to object translation and s-
cale change.
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Fig. 2. A schematic view of our proposed method. Our sys-
tem consists of three modules. The first generates object pro-
posals for dataset images. The second module is a large CN-
N that extracts a feature vector for each proposal. The third
module is an indexing system that efficiently stores and orga-
nizes the feature vectors.

In this paper, we attempt to address two major questions.
First, how to deal with the asymmetrical search problem when
representing an image using CNNs. Second, how to collect
relevant training data. Training data is critical for learning C-
NN, but for instance search, there are few labelled examples.

Towards these goals, we propose ALADDIN, A Locality
Aligned Deep moDel for INstance search. A brief illustration
of ALADDIN is shown in Figure 2. In this model, we pro-
pose to use object proposal [12] to target query region in a
set of candidate regions. In this way, for each relevant image
in the dataset, at least one candidate region is approximate-
ly aligned to the query object. Then the asymmetrical ob-
ject retrieval is converted into symmetrical object matching.
To capture instance-level discriminative information among
these regions, a deep convolutional network is designed. In
addition, we propose a semi-supervised way to collect train-
ing data to train this network. We show that our method sig-
nificantly outperforms the best CNN-based method in both
accuracy and efficiency.

Major contributions of this work are two-folds:

1) A framework based on deep convolutional network for
instance search. To the best of our knowledge, deep learning
has not been successfully applied to instance search before;

2) A semi-supervised method to collect training data. Re-
cent works on CBIR [10] collected training data in a super-
vised way: the query object is known as a priori, then relevant
images are carefully collected to form the training set — this
is infeasible for real applications. In our method, no prior in-
formation and very little supervision is required for collecting
labelled training data.

2. ARCHITECTURE OVERVIEW

Current deep learning models are insufficient for capturing
the asymmetrical similarity relationship [1] between query
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Fig. 3. The architecture of the deep network for feature rep-
resentation.

objects and dataset images. To address this problem, we u-
tilize EdgeBox [12] to decompose a dataset image D into a
small set of regions such that each object appearing in D is
approximately aligned to one of the regions:

D:{R15R27"'7Rk} (D

EdgeBox generates around 2000 candidate regions per
image. We notice that some of these regions show very little
intensity variations, and they could hardly represent any ob-
ject. As an improvement, we discard these regions by setting
a small threshold on the standard variance of the region’s
pixel intensity. Such a simple procedure reduces the number
of proposed regions by about 10% without hurting the recall
rate of object detection.

Search then proceeds at the scale of candidate object re-
gions instead of the entire image. For accurate region match-
ing, we leverage the power of CNNs to learn discriminative
features for the aligned object regions. Specifically, the deep
network is learned to project aligned object regions into a new
feature subspace, under which patches depicting the same ob-
ject are closer to each other than patches of other objects. The
implementation of the network is presented in Section 3.

With the discriminative features extracted from CNNs, the
similarity between the query image () and a dataset image D
is determined by the maximum scored object region R,,:

<q,r>
llgll2llr(2

Sim(Q, D) = max sim(Q, R;) 3)

where ¢ and r represent the feature vectors of image () and
R; extracted from CNNs.

Exhaustive region search requires 2000-fold increase in
search time and memory storage. To solve this problem, we
propose to encode each feature vector using product quantiza-
tion (PQ) [13]. The similarity between query feature and one
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encoded feature could be calculated very fast using a look-
up table. We further incorporate these encoded features into
an inverted file system. This makes our retrieval system very
efficient.

3. NETWORK FOR FEATURE REPRESENTATION

3.1. Network Architecture

It is shown that CNNs trained on large datasets (DeCAF)
are generic and can help in other computer vision problems
[14][15]. However, this feature mainly focuses on category-
level image similarity [9]. In this paper, we aim at training an
end-to-end deep network for better instance-level feature rep-
resentation. The learned model keeps patches from the same
object to be closer than those of different objects by a large
margin. Towards this goal, we construct a set of triplets .7
where T; = {Q;, P;, N;}. In a triplet, (Q;, P;) represents a
pair of image regions depicting the same object, and (Q;, N;)
denotes two patches of different objects. Following [10][16],
we can define a ranking-based loss function:

UT) = Zmax{0,7 — sim(Qi, P;) + sim(Qs, Ni)} (4)

where 7y represents the margin, and the similarity function is
determined by Equation 2.

In our implementation, except the loss layer, we retain a
similar architecture as AlexNet [7]. As is shown in Figure
3, in the training step, the network takes a set of triplets as
inputs. The three examples in a triplet are fed into individual
CNN s that share weights, and the ranking loss layer defined in
Equation 4 is placed on top of the outputs of the three CNNs.
While in the testing step, the test image is fed into the trained
CNN directly for feature extraction.

Following [8, 17], we use ImageNet-trained model as ini-
tializing model, and then fine-tune the parameters with the
triplet training data 7. The optimization can be done by
applying Stochastic Gradient Descent (SGD) algorithm with
Back-propagation (BP).

3.2. A semi-supervised way to collect relevant training
data

As with most machine learning problems, it is challenging
to collect large datasets for training deep networks. Since
we expect to extract features from segmented object region-
s through CNNs, it would be better to collect a set of la-
belled triplets from aligned object patches instead of entire
images [ 1 8]. Towards this goal, we propose a semi-supervised
method to mine “hard negative” triplets as training data. We
define “hard negatives” as the triplets in which DeCAF [14]
fails to tell the positive element from the negative one. The
method proceeds in four steps as shown in Figure 4:

1) For each dataset, select 2000 most likely object re-
gions according to the objectness score returned from [12].

Ranking list based on DeCAF feature
[ N mﬂ"‘:’

Rank 33

Rank 34
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Negative set

Fig. 4. Tllustration of our semi-supervised way to collec-
t training data. The correctly verified patches are labelled
by green bounding boxes, while the incorrect patches are la-
belled by red boxes.

Among these regions, the most obvious texture-less regions
could be easily recognized and filtered out. The remaining
regions serve as seed regions.

2) For each seed region .5, search for the best matching
region in each dataset based on DeCAF feature, and rank the
returned regions according to the similarity. The top 50 re-
turned regions are retained as candidates — they are regarded
as positive regions determined by DeCAF.

3) Verify the correctness of the candidates. We combine
conventional local features (BoW [19] and BoB [6]) with
RANSAC [19] to verify if the candidate region is a correct
match to the seed region. Specifically, for a candidate re-
gion, if more than ten local feature matches are verified by
RANSAQC, it is considered as a correct match. We denote the
set of verified correct matches as well as the seed region by
Cp, whilst the set of incorrect matches by C,,.

4) Divide C, into two halves — one as queries and the
other one as positives. Take regions in C,, as negatives. Then
a set of triplets is generated as training data.

4. EXPERIMENTAL RESULTS

4.1. Datasets and baselines

We test the results on Oxford5Sk [19], Paris6k [20], and a more
challenging dataset — Sculpture6k [6] which is featured for
smooth and texture-less objects.

We evaluate our method with two groups of baselines.
The first group includes four bag-of-feature (BoF) based mod-
els, i.e., bag-of-words (BoW) [21], bag-of-boundaries (BoB)
[6], Asymmetrical similarity (AS) [1] and Localized search
(LS) [5]. The other group includes state-of-the-art methods
based on deep learning, i.e., DeCAF [14], ReDSL [10], CNN-
ss [11] and Deep Local Features (DLF) [22]. We denote the
Locality Aligned scheme as “LA”. The performance is eval-
uated by mean average precision (mAP) [19].
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Table 1. The performance of instance search on three datasets
(%). The average mAP is denoted as Generic.

Model Oxford Paris Sculpture | Generic
BoW [21] 64.78 53.29 8.0 42.03
BoB [0] - - 45.4 (6] -
AS [1] 77.80 - - -
LS [5] 73.40 [5] - - -
DeCAF [14] 30.4 57.6 38.4 42.13
ReDSL [10] 65.41 76.50 53.48 56.48
CNN-ss [11]"! 67.19 75.59 41.33 61.37
DLF[22] 64.9 69.4 - -
LA+DeCAF 67.79 75.80 51.68 65.09
ALADDIN 71.97 78.28 59.26 71.83

Table 2. Efficiency of our method compared with other works

. runtime (s)
Model Dim Oxford 5k Paris 6k
BoW [21] M 0.031 0.042
DeCAF [14] | 4096 0.241 0.301
CNNss [11] | 35k 1.783 2.009
ALADDIN | ~ 8k 0.009 0.011

4.2. Implementations

Our deep model is implemented by Caffe [23]. We take the
activations of the first fully-connected layer as features for the
aligned object patches. The features are compressed by PCA
to 512 dimensions and followed by whitening [24]. To encode
the features using PQ, the 512-D features are grouped into 16
parts, each part is encoded by 8§ bits (256 clusters).

4.3. Performance evaluation

Deep Feature VS BoF: As is shown in Table 1, BoW work-
s well on OxfordSk and Paris6k, but shows limited perfor-
mance on Sculpture6k. That is because SIFT-like features
are incapable of describing smooth and texture-less objects.
BoB is not tested on Oxford5k and Paris6k since it is designed
specifically for smooth objects. In contrast, deep convolution-
al models are capable of describing more generic objects.
Ours VS Other Deep Models: 1) How important are
CNN features at aligned object region level? From Table
1, it is clear that although DeCAF [14] is helpful features
in many computer vision problems, they do not deal with
the asymmetrical similarity associated in the task of instance
search. In contrast, by decomposing the entire image into
a set of candidate object regions (LA + DeCAF), the per-
formance boosts significantly on three datasets. Also, LA +
DeCAF outperforms CNNss, because compared with locality
aligned scheme, CNNss lacks invariance to object translation
and scale change. 2) How important it is to capture instance-

!For a fair comparison, we re-implement the CNNs with Caffe [23]. Note
that [1 1] applied Overfeat in his implementation, which achieved a better
baseline result.

Fig. 5. Comparison of ranking example of LA+DeCAF (up-
per) and ALADDIN (bottom). False results are marked with
red boxes.

level image distinction? We further compare the result of
searching with DeCAF with the one that features are learned
to capture instance-level image distinction. It is clear that
by further leveraging instance-level distinction (ALADDIN),
the retrieval performance boosts by 6.74% compared with
LA+DeCAF on three datasets in average. A clear example
is shown in Figure 5. We also compare the results of learn-
ing a ranking model on top of entire images (ReDSL) and on
aligned object patches (ALADDIN). It is obvious that learn-
ing a ranking model on top of aligned object patches is better,
that is because learning CNNs from scratch is insufficient to
capture the asymmetrical similarity, but by decomposing the
image into aligned object regions, we make the subsequent
training of convolutional networks drastically easier.

4.4. Efficiency analysis

We compare the speed efficiency with BoW[21], DeCAF [14]
and CNNss [11] in Table 2 2. BoW is the simplest baseline of
local features-based method. DeCAF stands for holistic fea-
tures. CNNss gives the state-of-art performance among deep
learning based methods. The speed of the algorithms is evalu-
ated by the average processing time per query. It is clear that
CNNss is the slowest due to exhaustive search among split
sub-regions. BoW model is much faster because of its sparse
distribution of feature. Compared with BoW model in which
the query image is represented by hundreds of local features,
query in our method is represented by only one feature vector,
i.e., the holistic CNN feature. Therefore, our method reduces
the search time compared with BoW model.

5. CONCLUSIONS

In this paper, we proposed a locality aligned deep model for
instance search. Our method addresses the problem of asym-
metrical similarity by decomposing the dataset images into
aligned object regions, and leverages the strength of CNN for
image representation. The CNN is learned using a training
set collected in a semi-supervised method. Extensive exper-
iments on three benchmark datasets confirm that our method
is more suitable for generic instance search than most conven-
tional methods, and significantly outperforms the best CNNs-
based method in both accuracy and efficiency.

2Hardware information: Intel Xeon E5-2609 2.40GHz CPU (8 Cores) and
48 GB RAM
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