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ABSTRACT

With the increasing availability of wearable devices, research on
egocentric activity recognition has received much attention recently.
In this paper, we build a Multimodal Egocentric Activity dataset
which includes egocentric videos and sensor data of 20 fine-grained
and diverse activity categories. We present a novel strategy to ex-
tract temporal trajectory-like features from sensor data. We propose
to apply the Fisher Kernel framework to fuse video and temporal
enhanced sensor features. Experiment results show that with careful
design of feature extraction and fusion algorithm, sensor data can en-
hance information-rich video data. We make publicly available the
Multimodal Egocentric Activity dataset to facilitate future research.

Index Terms— Multimodal Egocentric Activity dataset, Ego-
centric activity recognition, Multimodal Fisher Vector

1. INTRODUCTION

Egocentric or first-person activity recognition has attracted a lot of
attention. The ever-increasing adoption of wearable devices such as
Google Glass, Microsoft SenseCam, Apple Watch and Mi band fa-
cilitates low-cost, unobtrusiveness collection of rich egocentric ac-
tivity data. These devices can monitor activities and gather data any-
time from anywhere. The egocentric activity data is helpful in many
applications ranging from security, health monitoring, lifestyle anal-
ysis to memory rehabilitation for dementia patients.

Research on automatic egocentric activity recognition has been
focusing on using two broad categories of data: low-dimensional
sensor data and high-dimensional visual data. Low-dimensional sen-
sor data such as GPS, light, temperature, direction or accelerometer
data has been found to be useful for activity recognition [1, 2, 3, 4, 5].
[2] proposes features for egocentric activity recognition computed
from cell-phone accelerometer data. They reported over 90% accu-
racy for 6 simple activities. [3] reported more than 80% accuracy
for 9 activities with sensors located at two legs. Low-dimensional
sensor data can be collected and stored easily, and the computational
complexity of the recognition is usually low.

More recently, there is a lot of interests to perform egocentric
activity recognition using high-dimensional visual streams recorded
from individuals’ wearable cameras. Compared to low-dimensional
sensor data, visual data captures much richer information: scene de-
tails, people or objects the individual interacts, for example. There-
fore, several egocentric video datasets and approaches have been
proposed to recognize complex activities. Among them, some pre-
vious works focus on extraction of egocentric semantic features like
object [6, 7], gestures [8] and object-hand interactions [9] or dis-
criminative features[10]. Recently, trajectory-based approach [11]
has been applied to characterize ego-motion in egocentric videos,
and encouraging results have been obtained for activity classifica-
tion [12].
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Fig. 1: (a) Sample frames from videos (b) Activity categories

Previous work has investigated egocentric activity recognition
using either low-dimensional sensor data or high-dimensional visual
data. To the best of our knowledge, there is no previous work to
study the potential improvement with using both the sensor and vi-
sual data simultaneously. To address this research gap, we make
several novel contributions in this work.

First, we build and make publicly available a challenging Mul-
timodal Egocentric Activity dataset1 that consists of 20 complex
and diverse activity categories recorded in both sensor and video
data. The sensor and video data are recorded in a synchronized
and integrated manner to allow new algorithms to explore them
simultaneously. Second, we propose a novel technique to fuse
the sensor and video features using the Fisher Kernel framework.
Fisher kernel combines the strengths of generative and discrimi-
native approaches[13, 14]. In this work, we propose a generative
model for the sensor and video data. Base on the model, we apply
Fisher kernel framework to compute multimodal feature vectors for
a discriminative classifier. We refer the determined multimodal fea-
ture vectors as Multimodal Fisher Vector (MFV). Third, we perform
comprehensive experiments to compare the performance of different
approaches: sensor-only, video-only, and the fusion of both.

The rest of this paper is organized as follows. In Section 2 we
present our Multimodal Egocentric Activity dataset. The methodol-
ogy is described in Section 3. Experimental evaluation is presented
in Section 4 and we conclude the work in Section 5.

2. MULTIMODAL EGOCENTRIC ACTIVITY DATASET

To record multimodal egocentric activity data, we created our own
application that runs on Google Glass. This application enables us
to record egocentric video and sensor data simultaneously in a syn-
chronized manner. The following types of sensor data are supported
on the glass: accelerometer, gravity, gyroscope, linear acceleration,

1Dataset:http://people.sutd.edu.sg/ 1000892/dataset
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magnetic field and rotation vector. These sensors are integrated in
the device and they can help capturing accurate head motion of indi-
viduals when they are performing different activities.

The Multimodal Egocentric Activity dataset contains 20 distinct
life-logging activities performed by different human subjects. Each
activity category has 10 sequences. Each clip has exactly a duration
of 15 seconds. The activity categories are listed in Fig.1b. Sample
frames of writing sentences, organizing files and running are shown
in Fig.1a. These categories can be grouped into 4 top level types:
Ambulation, Daily Activities, Office Work, Exercise. Subjects have
been instructed to perform activities in a natural and unscripted way.

The dataset has the following characteristics. Firstly, it is the
first life-logging activity dataset that contains both egocentric video
and sensor data which are recorded simultaneously. Secondly, the
dataset contains considerable variability in scenes and illumination.
Videos are recorded both indoor and outdoor, with significant change
in the illumination conditions. For instance, the walking routes are
in various environments, such as residential areas, campus, shopping
mall, etc. Thus even though different subjects do the same activity,
their background varies. Thirdly, we build a taxonomy based on the
categories shown in Fig.1b. All 20 categories can be grouped into 4
top level types. This allows evaluation of new visual analysis algo-
rithms against different levels of life-logging activity granularity.

3. METHODOLOGY

In this section, we describe egocentric video and sensor feature ex-
traction. Furthermore, we present a simple but effective way to en-
code temporal information in sensor features. In the end, we propose
a Multimodal Fisher Vector approach for combining video and sen-
sor features.

3.1. Video trajectory features

We evaluate state-of-the-art trajectory-based activity recognition on
egocentric videos in our own dataset. The dense trajectory approach
we used has already been applied to third-person view activity recog-
nition in [11]. Dense trajectory approach is applied instead of im-
proved trajectory approach [15] because dense trajectory could cap-
ture more ego-motion information in egocentric videos.

Dense trajectories are obtained by tracking densely sampled
points using optical flow fields. Foreground motions, background
motions and head movements are extracted using this approach.
Several kinds of descriptors are computed for each trajectory and
their characteristics are discussed in [11]. Trajectory is a concatena-
tion of normalized displacement vectors. The other descriptors like
MBH (motion boundary histograms) are computed in the space-time
volume aligned with the trajectory. These descriptors are commonly
used for activity recognition nowadays. Then we applied Fisher ker-
nels on trajectory features as in [12], where the trajectory features
are represented by means of a Gaussian Mixture Model (GMM).

3.2. Temporal enhanced trajectory-like sensor features

In this section, we establish a novel strategy to convert sensor time-
series data into trajectory-like feature. And then temporal order is
introduced to enhance sensor feature.

Trajectory-like features In video analysis, dense trajectories
are computed by tracking densely sampled points using optical flow
fields. Similarly, we firstly convert time-series data of sensors into
trajectory-like data. So a sliding window is required to generate tra-
jectory of sensor data (See Fig.2). For example, we build a window

Fig. 2: Illustration of temporal enhanced trajectory-like sensor fea-
tures. (Color of windows indicates similar patterns)

of 10 samples to extract a trajectory of length equals to 10 and then
move the window one frame forward and extract another trajectory.
This process could be done until end of the file and thus we could
generate many trajectories for sensor data.

Temporal enhanced sensor features Generally, in image pro-
cessing, Fisher vector encoding is an orderless approach because it
represents an image as an orderless collection of features. While,
for sensor data processing, the temporal order of trajectory-like data
or patterns could be significantly different in recognizing two activ-
ities. However, we do not want timestamp of each trajectory to be
included since patterns do not hold exact correspondence in time se-
quences for one activity. If we simply add timestamp as one more
dimensional data, noises could also be added into sensor features.
Because essentially the precise timing of a pattern does not matter.
While, in some cases, the order of patterns or the stage of pattern oc-
currence plays an major role in differentiating two distinct activities.

To overcome the difficulty, we segment the time-series data into
several stages to avoid fine-grained windows. And then these seg-
ments are indexed starting from 1 which represents their temporal
orders as Fig.2 shows. Then the trajectory-like features inside each
part is associated with their normalized temporal order. It turns out
to be effective with this quantization strategy for activity recognition
using sensor data.

3.3. Multimodal Fisher Vector

In this section, we construct a Multimodal Fisher Vector (MFV)
which utilizes the Fisher Kernel framework to combine video trajec-
tory features and temporal enhanced sensor features extracted from
a clip. Fisher Kernel has been introduced to combine the benefits of
generative and discriminative approaches [13]. The idea is to charac-
terize signals with a gradient vector derived from a pdf which models
the generating process of the signal. In our case, the signal is the tu-
ple f = (x, s), x being the video trajectory feature and s being the
associated temporal enhanced sensor feature. The generative model
of f will be discussed later.

Let p be a pdf with a parameter set λ. Under the framework,
one can characterize N features F = {fn, n = 1, · · · , N} with
the following gradient vector:

∇λ log p(F |λ) (1)

To illustrate MFV, we first consider video features code-
book generated by a Gaussian Mixture Model (GMM). X =
{xn, n = 1, · · · , N} denotes the set of trajectory features ex-
tracted from videos and λ the set of parameters of the GMM.
λ = {θi,µxi,Σxi, i = 1, · · · ,K} where θi,µxi, and Σxi denote
respectively the weight, mean vector and covariance matrix of Gaus-
sian i and K denotes the number of Gaussian. We assume diagonal
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Σxi. The likelihood that the observation xn was generated by
GMM is:

p(xn|λ) =
K∑
i=1

θipi(xn) (2)

the weights are subject to the constraint:
∑
θi = 1. The components

pi are given by:

p(x|ω = i) =
exp(− 1

2
(x− µxi)

′Σ−1
xi (x− µxi))

(2π)D/2|Σxi|1/2
(3)

where D is the dimensionality of the video feature vectors and |•|
denotes the determinant operator.

We parameterize θi = exp(αi)/
∑
j exp(αj), which avoids en-

forcing explicitly the constraints. With qni to denote the posterior
p(ω = i|xn), or responsibility, and xni to denote xn − µxi, the
gradients of the log-likelihood for a single trajectory feature are,

∂ log p(xn)

∂αi
= qni − θi (4)

∂ log p(xn)

∂µxi

= qniΣ
−1
xi xni (5)

∂ log p(xn)

∂Σ−1
xi

= qni(Σxi − x2
ni)/2 (6)

x2
ni denotes element-wise square. The representation is obtained by

averaging these gradients over all xn.
To generate MFV, we apply a single Gaussian as the genera-

tive model for sensor features with the same label ω. To assign ω
to sensor features, we first regard GMM as the basic bag-of-words
model by labeling the video feature points according to their largest
p(ω = i|xn). It means we use the sensor patterns which has the
same starting time with video trajectories in video codebook to build
sensor codebook instead of using GMM. The intuition is that the vi-
sual trajectories can be associated with sensor trajectory-like features
by establishing relationship between two modalities’ codebooks. In
other words, one single Gaussian of sensor trajectory-like features
is built based on each Gaussian of video trajectory features when
constructing the codebook for sensor features.

Each sensor feature could correspond to multiple video trajecto-
ries, because a lot of video trajectories could be generated for each
frame. So we use max pooling to assign label ω to the sensor data.
Each vector is then represented as the tuple b = (ω, s), where ω is
the label and s is the sensor feature associated with temporal order.
We then define a generative model over the tuple as,

p(b) = p(ω)p(s|ω) (7)

p(ω = i) = θi (8)

p(s|ω = i) =
exp(− 1

2
(s− µsi)

′Σ−1
si (s− µsi))

(2π)(d+1)/2|Σsi|1/2
(9)

It can be shown that the gradients of the log-likelihood of sensor
features have similar representation as video trajectory features, i.e.,
(5), (6). We assume that the video feature x and sensor feature s
are independent conditioning on ω. We use the following as the
generative model for f = (x, s):

p(f) =
∑
i

θip(x|ω = i)p(s|ω = i) (10)

p(x|ω = i) is defined exactly the same as in (3) and p(s|ω = i) as in
(9). The MFV has size (1+2(D+(d+1)))K = (2D+2d+3)K
where D is the reduced dimensionality of video trajectory feature
using Principal Component Analysis (PCA), and (d+1) the reduced
dimensionality of temporal enhanced sensor trajectory-like feature.

(a) (b)

Fig. 3: Comparison of FVS and TFVS with (a) different w (b) dif-
ferent k

4. EXPERIMENTAL EVALUATION

In this section, we first describe our experiment setup. In addition,
we study the parameter setting for temporal enhanced trajectory-
like sensor feature. Then we evaluate the performance of our MFV
method on our dataset. We present and discuss the results for activity
recognition task using MFV.

4.1. Experiment setup

In our experiment, the dimension of videos is 320× 180 and frame
rate is 10fps. For sensor data, in total, there are 19 dimensions of
sensor data including accelerometer, gravity, gyroscope, linear ac-
celeration and magnetic field and rotation vector. And in all cases,
we collected sensor data in 10Hz.

The number of Gaussian is set to K = 25 for video data and we
randomly sample a subset of 1% of all samples to estimate GMM
for building codebook. The dimensionality of the feature is reduced
by half using PCA. Finally, we apply power and L2 normalization
to MFV as in [16]. The cost parameter C = 10 is used for lin-
ear Support Vector Machine (SVM) and one-against-rest approach
is utilized for multi-class classification. We use libsvm library [17]
to implement the SVM algorithm.

4.2. Parameter setting

Here, we conduct an experiment to select the window size and num-
ber of clusters in GMM process since these parameters are crucial in
trajectory-like sensor features generation.

We choose a moderate number of segments which is 4 for in-
dexing temporal orders. In Fig.3 we show that with window size
w = 3 and number of clusters k = 4 we could obtain the best result.
We compare temporal enhanced sensor Fisher vectors (TFVS) and
normal sensor Fisher vectors (FVS) with different parameters. It in-
dicates that usually TFVS outperforms FVS with carefully-selected
parameters. And then to evaluate MFV, we also choose w = 3 for
sensor trajectory-like feature.

An important observation here is that usually we do not need
large w and k. The setting w = 3 is able to provide enough statis-
tics of different patterns. We notice that k = 4 achieves the best
performance for both FVS and TFVS which makes intuitive sense
since sensor data has only 19 dimensions in each recording which
are much smaller compared to video features and, therefore, it does
not need a large k to encode the information. This is desirable, be-
cause the smaller k used, the less storage GMM models take and the
faster the computation goes when utilizing TFVS for encoding.
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Table 1: Comparison of different methods

SVM2 Decision Tree2 FVS TFVS
Accuracy 47.75% 51.80% 65.60% 69.00%

FVV FVV + FVS FVV + TFVS MFV
Accuracy 78.44% 80.45% 82.20% 83.71%

4.3. Evaluation of temporal enhanced sensor Fisher Vector

We evaluate the proposed TFVS on sensor data in our dataset. To
provide comprehensive analysis of different approaches, we further
compare the results of the proposed approach with FVS and other
methods on activity recognition.

Fig.4a provides the confusion matrix on classifying sensor data
using TFVS. The indices of activities are shown in Fig.1b. We notice
that TFVS performs well as expected for some low-level activities
like Ambulation and Exercise. While for other high-level activities
like organizing files, the accuracies are around 50% only. We believe
this is due to the fact that sensor data can only capture the head
motion and cannot analyze the details of scene or objects. Note that,
TFVS outperforms FVS which confirms that the temporal enhanced
method is effective.

Comparison with feature-based approach on sensor data We
evaluate a system that uses phone-based accelerometers and feature-
based technique from [2] to compare with our TFVS. Features are
extracted by calculating statistics like average value, standard devi-
ation and designing other features like time between peaks. Then
informative features based on raw accelerometer readings are gener-
ated. We choose decision trees and SVM to evaluate these features.
The results are reported in Table 1. We can see that our approach
outperforms feature-based approach with both SVM and decision
tree classifiers. Because these features are mostly global statistics.
While usually only some repeated patterns of the signal that can tell
what activity it is. Our TFVS makes use of windows to extract the
interesting parts. And with temporal orders, it can get more detailed
information for these patterns.

4.4. Evaluation of Multimodal Fisher Vector

We conduct experiments to confirm superiority of our MFV repre-
sentation over both FVV and TFVS, as well as a simple concatena-
tion of these two vectors. We also discuss the behavior of the MFV
on our dataset, particularly on some categories.

The classification accuracy of normal video Fisher vectors
(FVV) is reported in Table 1. By examining the performance of
different categories using FVV, we can find that the accuracy of
making phone calls is 28.57% which is the lowest in Fig.4b. Videos
of making phone calls activity are often mis-classified into sitting
and drinking. In fact, for making phone calls, it is hard to recognize
even for human beings since there is hardly any object appearance
in the scene.

Fig.4c shows the confusion matrix for recognizing activities us-
ing MFV. Actually, it looks similar with confusion matrix for FVV.
While there are still improvements, because sensors can provide ac-
curate data for slight head motion. By comparing confusion matrices
of FVV and MFV, we observe that the largest improvements occur
in making phone calls (51.1%), working at PC (22.1%) and walking
downstairs (12.0%). For making phone calls, it is difficult for visual-
based approaches to classify since there is hardly any object appear-
ance in subjects’ view. And with temporal enhanced sensor data,

2feature-based approach in [2]

(a) (b) (c)

Fig. 4: Confusion matrices of (a) TFVS (b) FVV (c) MFV

we can find that there does exist some patterns for head movement
while making phone calls which is a very interesting observation.
And for working at PC, we believe that video trajectory approach is
confused by some movements on the monitors. These results again
confirm that our MFV approach performed better than FVV and it is
more accurate and stable.

From Table 1, we are able to observe that our MFV performs
superior to concatenation of FVV and FVS and even concatenation
of FVV and TFVS which has an accuracy of 82.2%. The results
suggest that MFV is a better representation to combine video and
sensor data. Intuitively, the single Gaussian model takes advantage
of detailed sensor statistics in each cluster of GMM built for video
trajectory features. Furthermore, there is a possibility of extending
single Gaussian model to multiple Gaussian models in order to im-
prove the accuracy.

4.5. Computational cost

From Table 1, we can see that by encoding temporal enhanced sen-
sor features, we could improve the accuracy from 78.4% to 83.7%.
And this is helpful especially when computing Fisher vector on sen-
sor data is extremely fast since its volume is quite small compared to
video data. In practical, generating trajectory features and calculat-
ing FV on all videos in the dataset takes about 3 hours, while it only
takes less than 1 minute for all sensor data. And with only TFVS
we could obtain an accuracy of 69.0% even for 20 categories, which
already satisfies the needs of some applications.

Therefore, there is no single perfect answer. Depending on par-
ticular application and requirement, we could choose different solu-
tions. MFV usually provides the best performance, while it is expen-
sive for processing. In some cases, TFVS can achieve satisfactory
performance with limited computational ability.

5. CONCLUSIONS

We built a challenging Multimodal Egocentric Activity dataset
which is recorded with videos and sensor data. The dataset contains
a variety of scenes and personal styles, capturing the diversity and
complexity of life-logging activities. We performed a detailed eval-
uation of state-of-the-art trajectory-based technique on videos and
achieve accuracy around 78%. We propose a novel technique to in-
corporate temporal information into trajectory-like sensor data. Our
TFVS outperforms the basic feature-based approach significantly
and also the FVS. More importantly, we propose to apply Fisher
Kernel framework to fuse sensor and video data. We improve the
performance from 78.4% to 83.7% by utilizing MFV for egocentric
activity recognition at a low cost.
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