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ABSTRACT

Action recognition and video summarization are two impor-
tant multimedia tasks that are useful for applications such
as video indexing and retrieval, video surveillance, human-
computer interaction and home intelligence. While many
approaches exist in the literature for these two tasks, to date
they have always been addressed separately. Instead, in this
paper we move from the assumption that these two tasks
should be tackled as a joint objective: on the one hand, action
recognition can drive the selection of meaningful and infor-
mative summaries; on the other, recognizing actions from a
summary rather than the entire video can in principle reduce
noise and prove more accurate. To this aim, we propose a
novel approach for joint action recognition-summarization
based on the performing latent structural SVM framework,
together with an efficient algorithm for inferring the action
and the summary based on the property of sub-modularity.
Experimental results on a challenging benchmark, MSR Dai-
lyActivity3D, show that the approach is capable of achieving
remarkable action recognition accuracy while providing ap-
pealing video summaries.

Index Terms— Action recognition, video summariza-
tion, sub-modular functions, latent structural SVM, depth
cameras.

1. INTRODUCTION AND RELATED WORK

Action recognition in video has been an important research
area of multimedia signal processing for over a decade. Ap-
plications are varied and include, amongst others, video
surveillance, human-computer interaction, sport analysis and
home intelligence. Over the years, a variety of approaches
have been proposed for recognition, including bag-of-features
representations, sequential classifiers and deformable part
models [1–4]. Such approaches have led to important results
even in challenging cases with realistic scenarios and large
class sets [5]. However, action recognition in video is still
intrinsically challenged by the typical, extensive variations in
illumination and view point. Fortunately, the recent release
of inexpensive depth cameras such as Microsoft Kinect has
helped mitigate these issues by adding an extra dimension

to the traditional RGB components and generally improving
recognition accuracy [6–8].

Another foundational area in multimedia signal process-
ing is video summarization which provides concise infor-
mation about a video by a few, informative frames. Video
summaries can be used for indexing and retrieval or for story-
boarding the videos to end users [9–11]. A useful video
summary typically enjoys two properties: coverage, account-
ing for the similarity between the summary and the rest of
the video, and non-redundancy, accounting for the diversity
among the frames in the summary. These two properties can
be combined into a single scoring function so as to assign a
unique score to each candidate summary. Unfortunately, the
number of possible candidates is exponential in the number of
frames and an exhaustive search for the optimal summary is
impossible. However, recent work from Lin and Bilmes [12],
Sipos et al. [13], and Tschiatschek et al. [14] has remarked
that the scoring function is sub-modular, and have exploited
the properties of sub-modularity to provide fast and effective
summary inference.

Given their intrinsic complexity, both action recognition
and summarization can benefit from structured prediction ap-
proaches. Structured prediction leverages the formalism of
graphical models to provide prediction for objects such as se-
quences, trees and graphs [15]. Its typical applications in im-
age and video analysis range from image segmentation and
action recognition to video indexing and summarization [2,
14,16]. An increasingly popular approach in this area is struc-
tural SVM (SSVM) that is an extension of the conventional
support vector machine for the classification of structured ob-
jects [17, 18]. SSVM has reported a strong experimental per-
formance when compared to alternative approaches such as
generative models and conditional random fields [15, 19].

To the best of our knowledge, action recognition and
video summarization have been tackled to date as separate
objectives. Instead, we believe that they could be usefully
merged into a single, joint objective following the intuition
that action recognition can drive the selection of meaning-
ful frames for the summary and that, in turn, recognizing
the action from a summary rather than the entire video may
reduce noise and prove more accurate. Therefore, in this
paper we present an approach based on latent structural SVM
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that jointly provides the action class and the summary for an
action video. Our main contribution is the design of a novel
scoring function which enjoys the property of sub-modularity
and therefore supports efficient inference of both the action
and the summary. We present experiments over a challenging
benchmark, MSR DailyActivity3D, showing that the ap-
proach is capable of achieving remarkable action recognition
accuracy while providing meaningful and visually-appealing
video summaries.

2. RECOGNITION AND SUMMARIZATION BY
SUB-MODULAR FUNCTIONS

The goal of our work is to provide simultaneous classifica-
tion and summarization of a video depicting an action. To
this aim, let us note the sequence of measurements from the
frames as x = {x1,..,xt,..,xT }where T is the sequence length;
the sequence of binary variables indicating whether a frame
belongs to the summary or not as h = {h1,..,ht,..,hT }; and
the action class as y. Formally, we aim to jointly infer class
label y and summary h while keeping the summary within a
given, maximum size, B:

y∗, h∗ = argmax
y,h

F (x, h, y) s.t.

T∑
t=1

ht ≤ B (1)

Lin and Bilmes in [12] have shown that desirable sum-
maries (i.e., summaries with good coverage and limited
redundancy) enjoy the property of sub-modularity. Sub-
modularity can be intuitively explained as a law of diminish-
ing returns [12]: let us assume to have a scalar function, F ,
which can measure the quality of a given summary, together
with an arbitrary summary, A. We now add a new element, v,
to A and compute the difference in value between F (A ∪ v)
and F (A) (the “return” of v for A). Let us then consider a
super-set of A, B ⊃ A, and add v to it: sub-modularity holds
if the return of v for B is less than or equal to the return of v
for A. In simple terms, the larger the summary is, the less is
the benefit brought in by a new element. This property can be
formally expressed as:

∀A ⊂ B, v : F (A∪ v)−F (A) ≥ F (B ∪ v)−F (B) (2)

Note that sub-modular functions are not required to be
monotonically non-decreasing, i.e., returns can be negative;
however, (2) must hold. For simplicity, in the following we
also assume F to be non-negative. The attractive property
of sub-modularity is that a value for F with a guaranteed
lower bound can be found by simply selecting the elements
for the summary one by one. The approximate maximum re-
turned by such a greedy algorithm is guaranteed to be at least
(1− 1/e) ≈ 0.632 of the actual maximum and is found to be
often better in practice [12, 20].

We now restrict the choice of scoring function to the case
of linear models:

F (x, h, y) = wTψ(x, h, y) (3)

withw a parameter vector andψ(x, h, y) a suitable feature
function of equal size. We further restrict w and ψ(x, h, y) to
be non-negative in all their elements. Lin and Bilmes in [12]
have proposed the following feature function for summariza-
tion:

ψ(x, h, y) =

T∑
t=1

(
T∑
u=1

δ(ht, hu)σ(xt, xu)

)
(4)

where

δ(ht, hu) =


λ1 if ht = 1, hu = 0

−λ2 if ht = 1, hu = 1

0 otherwise,
(5)

with λ1, λ2 > 0, and σ(xt, xu) a non-negative function
measuring the similarity between frames xt and xu. A frame
xt is selected for the summary if its corresponding binary in-
dicator, ht, is set to one. Therefore, the λ1 terms in (4) are the
coverage terms while the−λ2 terms promote non-redundancy
in the summary by penalising similar frames. Following [12],
it is easy to prove that function (4) is sub-modular.

Functions based on between-frame similarities such as (4)
are suitable for summarization, but do not properly describe
the class of the action since their space is very sparse. Typical
feature functions for action recognition are instead based on
bagging or averages of the frame measurements. To provide
joint summarization and recognition, we propose to modify
(4) as follows:

ψ(x, h, y) =

T∑
t=1

(
δ(ht)xt +

T∑
u=1

δ(ht, hu)σ(xt, xu)

)
(6)

with

δ(ht) =

{
λ3 > 0 if ht = 1

0 if ht = 0
(7)

In this way, a new term is added containing the weighted
sum of all measurements xt in the summary. Such a term is
equivalent to a pooled descriptor and promises to be infor-
mative for action recognition. We now prove that (6) is still
sub-modular:

Proof : Given a current summary, h, the addition of any
new frame to it makes term

∑T
t=1 δ(h

t)xt vary by the same
amount irrespectively of h. This term therefore satisfies in-
equality (2) with the equal sign. Given that convex combina-
tions of sub-modular functions are also sub-modular [12], the
overall sub-modularity of (6) follows. �
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The main benefit of sub-modular scoring functions are the
performance guarantees on greedy inference algorithms. Al-
gorithm 1 shows the greedy algorithm that we use to jointly
infer the best action class and the best summary, choosing one
frame for the summary at a time.

Algorithm 1 Greedy algorithm for inferring class y∗ and
summary h∗ given scoring function F (x, h, y).
max = −∞, argmax = 0
for y = 1...|Y | do
h∗ ← ∅
X ← x
while X 6= ∅ and |h∗| ≤ B do
k ← argmaxv∈X F (x, h∗ ∪ v, y)− F (x, h∗, y)
h∗ ← h∗ ∪ {k}
X ← X\{k}

end while
if F (x, h∗, y) > max then
max = F (x, h∗, y)
argmax = y

end if
end for

2.1. Latent Structural SVM

As framework for learning parameter vector w, we adopt
the popular latent structural SVM [18] which has proved
effective in a variety of multimedia signal processing appli-
cations [2, 16, 21]. In the training set, the action classes are
supervised, but the summaries are completely unsupervised.
Given a training set with N videos, (xi, yi), i = 1 . . . N , the
learning objective of latent structural SVM:

w∗ = argmin
w,ξ1:N

1

2
‖w‖2 + C

N∑
i=1

ξi

s.t. wTψ(xi, h
∗
i , yi)− wTψ(xi, h, y) ≥ ∆(yi, y)− ξi

∀{y, h} 6= {yi, h∗i }

(8)

h∗i = argmax
h

w∗Tψ(xi, h, yi) (9)

is an iterative objective that alternates between the con-
strained optimization in (8), performed using the current val-
ues for latent variables h∗i , and a new assignment for h∗i (9)
from updated model w∗. The loss function that we choose
to minimize, ∆(yi, y), only accounts for the loss from action
misclassifications. As such, the selection of frames for the
summary, h, is solely driven by the requirement of maximiz-
ing the action recognition accuracy.

The optimization in (8) is a standard optimization that can
be solved by use of any common solver. However, since the
number of constraints in (8) is exponential, we adopt the re-
laxation of [17] which can find almost-correct solutions us-
ing only a polynomial-size working set of constraints. The

working set is built by searching the sample’s most violated
constraint at each iteration of the solver:

ξi = max
y,h

(−wTψ(xi, h
∗
i , yi) + wTψ(xi, h, y) + ∆(yi, y))

(10)
which equates to finding the labeling with the highest sum

of score and loss:

ȳi, h̄i,= argmax
y,h

(wTψ(xi, h, y) + ∆(yi, y)) (11)

This problem is commonly referred to as “loss-augmented
inference” due to its similarity to the standard inference and
can be, again, solved by Algorithm 1 simply with the addition
of loss ∆(yi, y) to the score.

3. EXPERIMENTS

In this section, the proposed method is evaluated on the MSR
DailyActivity3D dataset [6] released by Microsoft Research
and captured using the Kinect RGBD camera. It depicts 16
common living-room activities including: drinking, eating,
reading, using cell phones, writing, using computer/laptop,
vacuuming, cheering up, sitting still, tossing crumbled paper,
playing games, lying on the sofa, walking, playing the guitar,
standing up, and sitting down. The total number of videos
is 320, staged by 10 actors and performed in two different
poses, one standing close to the couch and the other sitting on
it. For evaluation, a cross-subject evaluation is common, with
subjects 1− 5 used for training and subjects 6− 10 for test.

To pursue a more general approach, we have decided not
to use the information about the actor’s skeleton, limiting
feature extraction to the depth and RGB streams. For each
video, we have extracted local descriptors (HOG/HOF) over
a regular spatio-temporal grid using the code from [1]. As
time scale we have used τ = 2 resulting in 162-D descriptors.
For the encoding, we have first run k-means with k = 32
clusters from the entire set of descriptors of the training set.
Then, we have encoded all the descriptors of each frame
using VLAD [22] which embeds the distance between the
pooled local features and the cluster’s centres. The resulting
encoding is a 162×32 = 5, 184-D vector and is our measure-
ment for the frame. As software for the latent structural SVM
model, we have used Joachims’ solver [17] with Vedaldi’s
MATLAB wrapper [23]. As parameters, we have used sum-
mary size B = 10, regularization coefficient C = 100 and
performed a grid search over the training set for weights
λ1, λ2, λ3. [17, 23]

For performance evaluation, we care to note that our ap-
proach is the only approach to date to provide action recogni-
tion and video summarization as an integrated task. To eval-
uate the action recognition component, we compare the test-
set recognition accuracy using depth videos with: 1) a ref-
erence system using the pooled descriptors from all frames
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(a)

(b)

Fig. 1. Summary examples (displayed as RGB frames) for action walk: a) proposed method; b) SAD.

as measurement and libsvm as the classifier [24]; and 2) the
proposed system using using the pooled descriptors from all
frames as measurement, and without the summarization com-
ponent (i.e., λ1 = λ2 = 0). In addition, we compare the
action recognition accuracy with a system from the literature
that uses dynamic time warping [25]; to the best of our knowl-
edge, this is the only approach which does not use the actor’s
skeletal information in any form (locations or angles). Ta-
ble 1 shows that the accuracy achieved with the proposed
method (60.0%) is much higher than that of the reference
system (34.4%) and also remarkably higher than that of the
proposed method using all frames (48.8%). This proves that
action recognition based on a selected summary can be more
accurate than recognition from the entire video, and validates
the intuition of providing action recognition and summariza-
tion jointly. In addition, the accuracy is also significantly
higher than that from the dynamic time warping approach
(54.0%). These accuracy levels can be regarded as satisfac-
tory since they are far above chance accuracy, i.e. 1/16 =
6.25% for this dataset. Eventually, Table 1 shows that the ac-
curacy from depth videos is also remarkably higher than that
from RGB videos (46.3%), showing that depth is a more in-
formative clue for recognizing actions.

Table 1. Comparison of action recognition accuracy on the
MSR Daily Activity 3D dataset.

Method Accuracy

libsvm [24] 34.4%
Proposed method (all frames) 48.8%

Proposed method 60.0%
Dynamic temporal warping [25] 54.0%
Proposed method (RGB videos) 46.3%

For the evaluation of the summarization component, since
a ground truth is not available, we resort to qualitative com-
parisons. In particular, we compare the summaries obtained

with the proposed method with those produced by a popu-
lar summarization approach, the sum of absolute differences
(SAD), which has been widely used in object recognition
and video compression [26]. SAD is a low-level approach
that selects the frames for the summary as those with the
largest, absolute difference from the previous frame, up to the
given budget. The examples displayed in Fig. 1 show that the
summaries provided by the proposed approach appear more
meaningful, faithful and informative about the content of the
video.

4. CONCLUSION

In this paper, we have presented a joint approach for action
recognition and summarization of action videos. The main
benefit from the joint approach is two-fold: on the one hand,
the video summaries are driven by high-level concepts such as
actions and activities. On the other hand, the selection of rele-
vant frames leads to improvements in action recognition accu-
racy. Experiments carried over a probing dataset (MSR Dai-
lyActivity3D) containing both RGB and depth videos have
shown that:

• the accuracy achieved by the proposed approach on ac-
tion recognition from depth videos is higher than that
of alternative methods which do not deliver summaries
as an objective or a by-product;

• in a qualitative comparison, the summaries achieved by
the proposed approach appear to be more informative
than those provided by a low-level approach such as
SAD.

A future extension of this work could be the inclusion of
partially-supervised summaries in the annotation, with the in-
tegration of summary loss functions such as V-ROUGE [14]
in the learning objective.
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