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ABSTRACT

This paper addresses the compressive sensing with Multiple
Measurement Vectors (MMV) problem where the correlation
amongst the different sparse vectors (channels) are used to
improve the reconstruction performance. We propose the use
of Convolutional Deep Stacking Networks (CDSN), where
the correlations amongst the channels are captured by a mov-
ing window containing the “residuals” of different sparse vec-
tors. We develop a greedy algorithm that exploits the structure
captured by the CDSN to reconstruct the sparse vectors. Us-
ing a natural image dataset, we compare the performance of
the proposed algorithm with two types of reconstruction algo-
rithms: Simultaneous Orthogonal Matching Pursuit (SOMP)
which is a greedy solver and the model-based Bayesian ap-
proaches that also exploit correlation among channels. We
show experimentally that our proposed method outperforms
these popular methods and is almost as fast as the greedy
methods.

Index Terms— Convolutional Neural Network, Dis-
tributed Compressive Sensing, Deep Stacking Network.

1. INTRODUCTION

Compressive Sensing (CS) [1, 2, 3] is an effective framework
where both sensing and compression are performed simulta-
neously. The only requirements are the sparsity of the signal
in some basis, and the incoherence between this sparsifying
basis and the measurement matrix. Since many natural signals
are sparse in the time (or spatial) domain or in a transform
domain, CS has found many applications including medical
imaging, remote sensing, healthcare tele-monitoring, etc.

In the general CS framework, instead of acquiringN sam-
ples of a signal x ∈ <N×1, M random measurements are
acquired where M < N . This is expressed by:

y = Φx (1)

where y ∈ <M×1 is the known measured vector and Φ ∈
<M×N is a random measurement matrix. To uniquely recover
x given y and Φ, x must be sparse in a given basis Ψ. This
means that

x = Ψs (2)

From (1) and (2):
y = As (3)

where A = ΦΨ. Since there is only one measurement vector,
the above problem is usually called the Single Measurement
Vector (SMV) problem in compressive sensing.

In distributed compressive sensing, also known as the
Multiple Measurement Vectors (MMV) problem, a set of
L measurement vectors {yi}i=1,2,...,L is given. A set of L
sparse vectors {si}i=1,2,...,L is to be jointly recovered from
these measurement vectors. Let the L sparse vectors and the
L measurement vectors be arranged as columns of matrices
S = [s1, s2, . . . , sL] and Y = [y1,y2, . . . ,yL], respectively.
In the MMV problem, S is to be reconstructed given Y:

Y = AS (4)

Generally, solving the MMV problem jointly can lead to a
better reconstruction performance than that obtained by solv-
ing the SMV problem for each vector independently [4].

To find S in (4), there are different approaches in the liter-
ature including the greedy approach [5] where a non-optimal
subset selection is performed, relaxed mixed norm minimiza-
tion approach [6] where a convex optimization problem is
solved and the Bayesian approach [7, 8, 9] where a prior is
given, i.e., Y is observed and S is sparse, then a posterior
distribution is estimated for the entries of S given the prior
information.

Recently a number of methods based on Deep Learning
[10, 11, 12, 13] have been proposed for the SMV problem in
CS [14] and also for the MMV problem [15, 16]. These meth-
ods are data driven methods that exploit the structure of the
sparse vector(s) and not only their sparsity. In [15], a Deep
Stacking Network (DSN) [17] was used to extract the struc-
ture of the sparse vectors in S. To find the parameters of the
DSN, a Restricted Boltzmann Machine (RBM) [18] was used
for pre-training and then fine tuning was performed. In [14], a
feedforward neural network was used to solve the SMV prob-
lem. Similar to [15] (but assuming there is only one sparse
vector in [15]), a pre-training phase followed by a fine tun-
ing was used in [14]. For pre-training, the Stacked Denoising
Auto-encoder (SDA) [19] has been used. Note that an RBM
with Gaussian visible units and binary hidden units (i.e., the
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one used in [15]) has the same energy function as an auto-
encoder with sigmoid hidden units and real valued observa-
tions [20]. Therefore the extension of [14] to the MMV prob-
lem is expected to give similar performance to that of [15].

In [16], a different type of MMV problem where the
sparse vectors are not jointly sparse was studied. A deep
architecture based on Long Short Term Memory (LSTM)
was used to capture the dependency among sparsity patterns
of different channels. These sparsity patterns are generally
not the same. In this paper, we address the MMV problem
where we assume the sparsity patterns in different channels
are similar. For example, all channels are DCT or wavelet
transforms of images. This type of MMV problem has wide
practical applications. The specific structure in the problem
calls for the use of a different kind of deep architecture, the
convolutional deep stacking network. This architecture will
be described in detail next.

2. THE PROPOSED METHOD

To capture the correlations amongst the columns of the un-
known matrix S, we propose a greedy reconstruction algo-
rithm with two steps. In the first step, at each iteration of
the reconstruction algorithm, and for each column of S rep-
resented as si, we first predict the location of next non-zero
entry, given the residuals of the sparse vectors (columns) in-
side the convolution window at that iteration. Then we add
the predicted location to the support of si. The definition of
the residual matrix at the j−th iteration is Rj = Y − ASj

where Sj is the estimate of the sparse matrix S at the j−th it-
eration. In the second step, we find the value of the non-zero
entry. This can be done by solving a least squares problem
that finds si given yi and AΩi

. AΩi
is a matrix that includes

only those atoms (columns) of A that are members of the sup-
port of si. To predict the location of next non-zero entry at
each iteration using residual vectors as input, we propose the
use of the Convolutional version of Deep Stacking Network
(CDSN).

Since we do not know the sparsity level in advance, and
also since at each iteration of the proposed method we predict
the location of one of the non-zero entries, we need to gener-
ate residual vectors corresponding to different sparsity levels.
To generate the training data, i.e., the “(residual,sparse vec-
tor)” pairs, assume that a sparse vector in the training data of
the i-th channel si has K non-zero entries. We find the loca-
tion of the largest entry of si and add it to the support set of
the i-th channel. Assume that the index of this location is k0.
Then we set the k0-th entry of si to zero. Now we find the
residual vector where the support set of the i-th channel has
only one member, which is k0:

ri = yi −AΩis(k0) (5)

It is obvious that this residual results from not knowing the
locations of the remaining k − 1 non-zero entries in the i-th
channel. From these k − 1 non-zero entries, the maximum
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Fig. 1. Up: Block diagram of the proposed method with win-
dow size 3. Bottom: Block diagram of the convoltional deep
stacking network with 3 layers. This diagram shows CDSN
for channel 2, and Rn denotes a random matrix.

contribution to the residual in (5) is from the second largest
entry in si. Assume that it is the k1-th entry of si. We nor-
malize all entries in si with respect to the value in the k1-th
entry. Therefore the training pair is ri in (5) as input and the
normalized si with k0-th entry set to zero as target. We con-
tinue this procedure up to the point where si does not have
any non-zero entry. Then we continue with the next training
sample. We do the same procedure for each channel.

The training of CDSN is done only once. Then the trained
network is used in the reconstruction algorithm. The block
diagram of the proposed method is presented in Fig. 1 where
the forward pass for the l-th layer is:

h(l) =
1

1 + e−W
(l)
1 z(l)

v(l) = [W
(l)
2 ]Th(l) (6)

where v(l) is the output and z(l) is the input of l-th layer and
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is defined as follows:

z(l) = [v(1),v(2), . . . ,v(l−1), r] (7)

In (7), r is the concatenation of all residual vectors in each
convolution window.

To find the CDSN unknown parameters W
(l)
1 and W

(l)
2

for each layer, l, We solve the following problem:

{W(l)
1 ,W

(l)
2 } = argmin

{W(l)
1 ,W

(l)
2 }

1

2
‖V(l) −T‖22 (8)

where T is a matrix whose columns are target vectors in the
training set and V(l) is a matrix whose columns are the cor-
responding output vectors from l-th layer. Please note that in
CDSN, similar to DSN discussed in [17], the problem in (8)
is solved for each layer separately. Each layer of CDSN in
Fig. 1 is a neural network with a non-linear hidden layer and
a linear output layer. The linearity of the output layer makes
it possible to calculate a closed form formulation for W

(l)
2

given W
(l)
1 and T [17]:

W
(l)
2 =

[
µI + H(l)[H(l)]T

]−1
H(l)TT (9)

where H(l) is a matrix whose columns are h(l) in (6) corre-
sponding to different training samples in the training set and
µ is the regularization parameter. Now, given W

(l)
2 in (9), and

considering the fact that W
(l)
2 also depends on W

(l)
1 , it can

be shown [21] that the gradient of the cost function in (8) with
respect to W

(l)
1 is:

∂‖V(l) −T‖22
∂W

(l)
1

= Z(l)

[
[H(l)]T ◦ [1−H(l)]T ◦

[[
H(l)

]†[
H(l)TT

][
T[H(l)]†

]
−TT

[
T[H(l)]†

]]]
(10)

where Z(l) is a matrix whose columns are z(l) in (7) corre-
sponding to different training samples in the training set and
◦ is the Hadamard product operator.

For each layer, we use stochastic gradient descent to find
W

(l)
1 . Usually exploiting the past gradient information can

improve the convergence speed in convex problems [22]. Al-
though the problem in (8) due to stack of non-linear hidden
layers is not necessarily convex, but we experimentally found
out that the past gradient information can be helpful here as
well. Similar to [21], we use the FISTA algorithm to acceler-
ate fine tuning. Therefore, the update equations for W

(l)
1 at

k-th iteration is as follows:

W
(l)
1,k = Ŵ

(l)
1,k − ρ

∂‖V(l) −T‖22
∂Ŵ

(l)
1,k

mk+1 =
1

2
(1 +

√
1 + 4m2

k)

Ŵ
(l)
1,k+1 = Ŵ

(l)
1,k +

mk−1

mk+1
(W

(l)
1,k −W

(l)
1,k−1) (11)

After finding W
(l)
1 from above update equations, we use the

closed form formulation in (9) to find W
(l)
2 .

Since the problem is not necessarily convex and we
have not used a large dataset for training, initialization of
W

(l)
1 is important. We used Restricted Boltzmann Machine

(RBM)[18] for initialization of the input weights in the first
layer as proposed and shown to be helpful in [23] and [17].
Similar to DSN, in CDSN we fix the learned parameters of
each layer when training of that layer is done. Then we
initialize the input weights of the upper layer, i.e., W

(l+1)
1 ,

with learned input weights of the lower layer, i.e., with W
(l)
1 .

We also concatenate all sparse channels in the convolution
window with outputs of all lower layers and use it as input to
upper layer of CDSN. This is shown in the block diagram of
CDSN in Fig. 1.

After finding the parameters of CDSN, we use the algo-
rithm presented in Algorithm 1 to find the sparset solution S
given Y and A in (4). We refere to this algorithm as CDSN-
CS since we use Convolutional DSN to find the sparse solu-
tion for compressive sensing with multiple measurement vec-
tors.

Algorithm 1 Distributed Compressive Sensing using Covolu-
tional Deep Stacking Network (CDSN-CS)
Inputs: CS measurement matrix A ∈ <M×N ; matrix of measurements Y ∈
<M×L; minimum `2 norm of residual matrix “resMin” as stopping criterion;
Trained “cdsn” model; Convolution window size “w”
Output: Matrix of sparse vectors Ŝ ∈ <N×L

Initialization: Ŝ = 0; j = 1; i = 1; Ω = ∅; R = Y.
1: procedure CDSN-CS(A,Y, cdsn)
2: while i ≤ N and ‖R‖2 ≤ resMin do
3: i← i + 1
4: for j = 1→ L do
5: R(:, j)i ←

R(:,j)i−1
max(|R(:,j)i−1|)

6: vj ←
cdsn([R(:, j−w

2 )i,R(:, j−w
2 +1)i, . . . ,R(:, j+ w

2 −1)i,R(:, j+ w
2 )i])

7: idx← Support(max(vj))
8: Ωi ← Ωi−1 ∪ idx

9: ŜΩi (:, j)← (AΩi )†Y(:, j) . Least Squares

10: ŜΩC
i (:, j)← 0

11: R(:, j)i ← Y(:, j)−AΩi ŜΩi (:, j)
12: end for
13: end while
14: end procedure

3. EXPERIMENTAL EVALUATION AND
CONCLUSIONS

We performed experiments on three different classes of im-
ages from a natural image dataset provided by Microsoft
Research in Cambridge [24]. This was to evaluate the
performance of different reconstruction algorithms for the
MMV problem, including the proposed method when DCT
or Wavelet transform were applied on images. We also com-
pared the CPU time of these methods.

The reconstruction error was defined as MSE = ‖Ŝ−S‖
‖S‖ ,

where S is the actual sparse matrix and Ŝ is the recovered
sparse matrix from random measurements by the reconstruc-
tion algorithm. The machine used to perform the experiments
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has an Intel(R) Core(TM) i7 CPU with clock 2.93 GHz and
with 16 GB RAM.

Ten randomly selected test images belonging to three
classes of this dataset (flowers, buildings, cows) were used
for experiments. We have used 64 × 64 images. Each image
was divided into 8× 8 blocks. After reconstructing all blocks
of an image in the decoder, the MSE for the reconstructed
image is calculated. The task was to simultaneously encode
8 blocks (L = 8) of an image and reconstruct them in the
decoder. This meant that S in (4) had 8 columns each one
having N = 64 entries. We used 40% measurements, thus
Y in (4) had 8 columns each one having M = 25 entries.
The encoder was a typical compressive sensing encoder, i.e.,
a randomly generated matrix A. We normalized each column
of A to have unit norm. To simulate the measurement noise,
we added a Gaussian noise with standard deviation 0.005 to
the measurement matrix Y in (4).

We compared the performance of the proposed algorithm,
CDSN-CS, with BCS[25] applied per channel, SOMP [5],
MT-BCS[8], T-SBL[9] and NWSOMP[15]. For each class
of images, we used just 55 images for training set and 5 im-
ages for validation set which do not include any of 10 images
used for test. We used 25 epochs for training the CDSN-CS.
The experiments were performed for two popular transforms,
DCT and Wavelet, for all of the above reconstruction algo-
rithms. For the wavelet transform we used Haar wavelet trans-
form with 3 levels of decomposition. For CDSN we used 3
layers and 64 neurons per layer and a window size of 5. For
NWSOMP we used 3 layers and 512 neurons per layers. For
all other methods, we used the MATLAB codes released by
the authors and the settings they recommended. Due to lack
of space, only the results for one class of images, i.e., cows,
are presented. Results for DCT transform and wavelet trans-
form are shown in Fig. 2. The results from the other two
classes of images are similar to what is presented here.

As observed in Fig.2, CDSN-CS outperforms the other
methods discussed in this paper for almost all sparsity lev-
els. For computational efficiency, since all methods are imple-
mented in MATLAB and run on the same machine, the CPU
time shown in Fig.2 demonstrates that the proposed method
is substantially faster than the Bayesian methods discussed in
this paper and is almost as fast as the greedy method SOMP.

In conclusion, this paper presents a method based on
convolutional deep stacking networks to reconstruct sparse
vectors in the MMV problem. The convolution window helps
to capture the correlation among different sparse vectors.
We experimentally showed that the proposed method out-
performs the popular SOMP and Bayesian methods for the
MMV problem. We also showed that it is almost as fast as
greedy methods. Our future work includes applying the pro-
posed method for distributed compressive sensing of different
frames in video and different channels of recorded electroen-
cephalogram (EEG) signals where sparse vectors are highly
correlated.
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