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ABSTRACT

We present a new supervised architecture termed Mediated
Mixture-of-Experts (MMoE) that allows us to improve clas-
sification accuracy of Deep Convolutional Networks (DCN).
Our architecture achieves this with the help of expert net-
works: A network is trained on a disjoint subset of a given
dataset and then run in parallel to other experts during de-
ployment. A mediator is employed if experts contradict each
other. This allows our framework to naturally support incre-
mental learning, as adding new classes requires (re-)training
of the new expert only. We also propose two measures to con-
trol computational complexity: An early-stopping mechanism
halts experts that have low confidence in their prediction. The
system allows to trade-off accuracy and complexity without
further retraining. We also suggest to share low-level convo-
lutional layers between experts in an effort to avoid compu-
tation of a near-duplicate feature set. We evaluate our system
on a popular dataset and report improved accuracy compared
to a single model of same configuration.

Index Terms— Deep Learning, Incremental Learning,
Mixture of Experts

1. INTRODUCTION

Deep learning methods in general, and Deep Convolutional
Neural Networks (DCN) in particular, have seen a surge in
popularity among researchers over the past decade or so.
While the application of early DCN was limited to sim-
ple tasks such as hand-written digit recognition [5], modern
state-of-the-art methods can meet or exceed human-level per-
formance on far more complex tasks, including generic image
classification [2, 4, 7]. Two factors that have contributed to
this development are the availability of large-scale image cor-
pora like ImageNet [6], and the wide-spread availability of
GPU-based computing hardware which renders computation-
ally expensive model training procedures feasible.

Experts systems are known to improve the classification
accuracy of neural networks even further and have been stud-
ied extensively. Previous work on Mixture of Experts (MoE)
[3] is however flawed in two aspects: First, computational
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Fig. 1. N experts are trained on their corresponding super-
classes Ci. At inference time, confidence is measured in con-
fidence modules ICj

i . In this example, expert two is stopped
at layer Conv 4 due to low confidence and its activations are
set to zero. A mediator with full classifier improves accuracy
of the system should more than one expert remain.

complexity in MoE is a multiple of that of a traditional model.
To this end, we propose early-stopping of experts. Our mech-
anism evaluates each expert’s confidence and is influenced by
a hyper-parameter, allowing a trade-off between complexity
and classification accuracy without the need for retraining.
Second, as recently pointed out in [8], training becomes more
difficult as datasets are getting larger. Intuitively, we expect
that an expert has extensive knowledge on a limited area of
expertise, i.e., a subset of the training data, and thereby natu-
rally avoids the issue. Previous MoE systems are trained on
full datasets, however, as difficulties arise when a decision is
needed on which expert to trust. To remedy this issue, we
introduce a mediator, see Figure 1. The mediator has a full
classifier, allowing it to arbitrate conflicting predictions when
multiple experts are confident.

In this paper we propose a new architecture which we
name Mediated Mixture of Experts (MMoE) that aims to
increase the classification accuracy of a general DCN. We
briefly discuss related research in Section 2 before formally
defining our method in Section 3. We follow by summarizing
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the outcome of our experimental evaluation in Section 4 and
give some concluding remarks in Section 5.

2. RELATED WORK

A great deal of literature on deep learning and in particular
on DCN has been published in recent years. Image classi-
fication with deep learning has profited from the availability
of large datasets (in terms of both number of classes and im-
ages). In this paper, our choice falls on the popular ImageNet
[6] dataset. Both a 22K classes and a 1K classes version exist
of this dataset, we evaluate our system on the latter.

AlexNet by Krizhevsky et al. [4] achieved a significant in-
crease in classification performance over traditional methods
on ImageNet, i.e., an top-1 accuracy of 62.5%, showing the
potential of deep learning for large datasets such as ImageNet.
Their success is arguably founded on three factors: Depth,
Rectified Linear Units (ReLU) as non-linearity and data aug-
mentations. We use CaffeNet, a variation of this model, as a
baseline to evaluate our system.

A hierarchical architecture for incremental learning was
presented in [8]. The authors suggested to use a Branching
layer to determine the superclass a specific problem belongs
to. Following this, a leaf model provided fine-grained classi-
fication. We follow their work insofar that we also propose
to use experts (leaf models) for fine-grained classification.
However, we avoid branching as it introduces a conditional
error that cannot be recovered. Branching error also poses a
scalability issue, as it grows with the number of superclasses.
Finally, the prediction process in their work has large redun-
dancy: Full models are used for both branching prediction
and fine-grained prediction.

Mixture of experts (MoE), as first proposed in [3], have
been well-known for a while. A great deal of work has been
done in this area and an overview can be found in [10]. Gen-
erally, a number N of expert networks are trained together on
a dataset. The experts learn discriminant features and thereby
improve the overall accuracy of the system. While this can
be used to improve classification results, the drawback lies
in the parallel execution of all N experts, which results in
longer runtime. In contrast to our proposed method, experts
are trained on the full dataset and have a complete classifier.
This is disadvantageous for incremental learning, a scenario
in which new classes are added over time, as all experts need
to be retrained on the new data.

The work of [9] discusses generality and specialization
of convolutional features, giving insight into how deep learn-
ing works. The same phenomenon has also been discussed
in [11] in the context of network visualization. In particular,
both works show that the first few layers of a DCN produce
general Gabor-like features, i.e., lines and blobs. It is only
in the higher layers that these features become more class-
specific. Inspired by this fact, instead of N times producing
nearly identical general features, we can compute a single set
of these features.

Table 1. Branching networks introduce additional error:
We trained such a network with two experts on superclasses
C1, C2 as in Sec. 4.1. Due to branching, the average accu-
racy on the full dataset C1 ∪C2 remains below the traditional
model. However, experts on their own have encouragingly
higher accuracy on their area of expertise than a traditional
model, see columns C1, C2. Note that the accuracy shown
here was achieved with a slim configuration of CaffeNet, i.e.,
the FC layers were reduced from 4096 to 512 neurons.

Name C1 ∪ C2 Class C1 Class C2

Branching 93.2 % 93.35% 93.04%
Expert 1 – 46.262 % –
Expert 2 – – 59.202%
Average 49.151% – –
Baseline [4] 49.35 % 41.52 % 55.96 %

3. PROPOSED METHOD

When tackling a problem, a divide-and-conquer approach can
often be helpful: In deep learning, we can train experts on
small problems such that the accuracy improves. This has
been used in MoE [3]: Experts are trained competitively in
the hope that they automatically learn discriminant features.
A gating network combines the prediction results.

Each expert’s area of expertise can also be designed with
help of prior knowledge. We can utilize two methods to gain
this knowledge: Spectral Clustering (as done in [8]) and ex-
plicit hierarchies (such as the ImageNet dataset provides), see
also Sec. 4.1. In both cases the i-th expert is then trained ex-
clusively on the subset of data in that superclass, which we
denote as Ci.
3.1. Simple Branching model

We briefly discuss a branching network as in [8], which pre-
dicts the superclass of an image. The branching network is a
DCN such as AlexNet [4] with the number of outputs in the
classifier reduced to N , the number of superclasses. In the
branching decision, the expert corresponding to the highest
activation is then selected to obtain a fine-grained prediction.

We trained such a system with two slim1 experts, as seen
in Table 1. Even though we used two experts only, classifi-
cation accuracy suffered from large branching errors: Should
the wrong expert be chosen, the error cannot be recovered.
Nevertheless, we also see that single experts show superior
performance on their area of expertise, confirming that we
are on the right track. The model we discuss in the following
is an attempt at reducing branching errors.
3.2. Branched experts with early stopping

We propose the following framework as depicted in Fig. 1:
The input is passed through a number of convolutional layers

1By reducing the number of neurons of both layers FC6 and FC7 to 512,
in the hope to keep parameter complexity low.
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(a) (b) (c)

Fig. 2. Mediation process: Experts (a) and (b) both show
strong opinions that contradict each other. Mediator (c) is
able to solve the conflict (here in favor of expert (a)).

to generate general features, as defined in [9]. These lay-
ers are shared between all experts and could encompass the
first two or three layers in the case of CaffeNet. Higher layer
features have a higher degree of specialization, and therefore
need to be finetuned for each expert. Parallel execution of
these specialized layers is costly, however, in particular for
large N . To this end we propose a confidence module, which
determines the confidence of whether the expert is able to
solve the problem. In particular, an expert i is deemed to
have low confidence (in layer j) if for its given score sji and a
threshold T :

max
k 6=i

(
sjk

)
− sji ≥ T, 1 ≤ i, k ≤ N (1)

In the following, we implement the confidence module
simply as a fully connected layer with N outputs, trained
on the complete dataset with the original labels replaced by
a superclass label lCi

∈ [0, N − 1]. Note the placement of
the confidence module: While lower layers have too general
features to compute a reliable score, early stopping in higher
layers diminishes the resource saving effect. We suggest an
intermediate position such as after Conv4.

Let uj
Ci

be the activation of the confidence module in
layer j of the expert on Ci. The appropriate score is then
simply the i-th component of the activation vector:

sji = uj
Ci,i

To support our decision for a simple threshold, we run a sim-
ple branching network (as described above) on a test set, and
measure the magnitude of the left-hand side of Equation (1).
We then note whether the branching decision is correct or not.
As is to be expected, bad branching decisions occur when this
magnitude is small, while correct decisions often have higher
confidence, see Table 2.

3.3. Mediator
Given that the inequality in (1) holds, an expert is deemed
to have low confidence and stopped. Its corresponding acti-
vations in the final layer are set to zero. So far, the system
described above performs slightly worse than a single model
with same configuration. This is due to those instances, where

Table 2. Mean and standard deviation of confidence scores in
cases of correct and incorrect branching decisions. Incorrect
decisions very often imply a low confidence value, allowing
us to decide whether additional experts need to be used to
solve the task.

Branching Mean Std.-dev.
Correct 6.1 3.44
False 1.8 1.67

more than one expert is active: An expert trained on a differ-
ent superclass could “mistake” the input for a particular fine-
grained class of his own domain, leading to conflicting opin-
ions. In these cases, we found it helpful to add a mediator,
that is, a slim model trained on all 1000 classes to arbitrate
opinions, see Figure 2. The resulting architecture then out-
performs the single model baseline.

Subsequently, the softmax probabilities of each expert
are weighted and averaged: The slim 1000-classes mediator
is only added when more than one expert is executed and
weighted with wMed. We set wMed = 0.6 if executed or
wMed = 0 otherwise. Experts are weighted according to
their confidence scores normalized to [0, 1] and subsequently
scaled by (1− wMed).

Our framework can also be used in the context of incre-
mental learning. To add a new superclass CN+1, we simply
train a single expert on the new data. Following this, the con-
fidence modules of other experts need to be finetuned to ac-
commodate for the new superclass. We stress that this is sig-
nificantly faster than training a full network, as the confidence
module only encompasses a single layer with N outputs, ren-
dering it very shallow and slim. In our experiments, 3 epochs
were found to be sufficient. In order to update the mediator
network, we can simply add extra neurons to the output and
finetune the network, see the Flat Increment technique in [8].

4. EVALUATION

The evaluation is performed on the ImageNet 1K dataset. We
begin with a description of how superclasses are formed.

4.1. Superclass construction
Superclasses can be defined in an automated or manual fash-
ion: In the former case Spectral Clustering, as was done in
[8], is a suitable choice. Alternatively, we can traverse the hi-
erarchy available with ImageNet and join several leaf classes
that are conceptually related. This provides a convenient ad-
vantage in an incremental learning scenario: We simply train
one or more new experts for new data. Contrary, when using
Spectral Clustering, it is necessary to retrain all of the existing
experts as well.

Due to space limitations, we limit ourselves to manually
defined superclasses and N = 2. We choose C1 as “artifact”
(with synset: n00021939) and C2 as all remaining classes,
resulting in a split of 517 vs. 483 leaf classes with roughly
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Fig. 3. Top-1 accuracy of our proposed system in relation to
threshold T , here on the slim seven layer configuration with
the first three layers shared. The expected number of param-
eters to be loaded equals that of traditional MoE systems for
T = 4.

Table 3. Top-1 accuracy, and stopping probabilities p1, p2 of
both experts for T = 4 under three different configurations.

Name Acc. p1 p2

MMoE (slim, 7L) 0.5618 0.2213 0.1512
MMoE (slim, 8L) 0.5296 0.1805 0.1545
MMoE (default) 0.5855 0.2225 0.17144
MMoE (slim, 7L, shared) 0.5361 0.2122 0.1801
Unmediated (slim, 7L, shared) 0.5052 0.2122 0.1801
Baseline (slim, 7L) 0.5344 – –
Baseline (slim, 8L) 0.4948 – –
Baseline (CaffeNet) [1] 0.5584 – –

(0.574) 2

660K and 620K images each. In other words, this simulates
adding “artifact” data to an existing model. In the following,
we refer to this as the Hierarchical set.

4.2. Results on Hierarchical set

Network configuration. We evaluate our system on three
configurations: First, a slim configuration of CaffeNet, where
both FC layers are reduced to 512 neurons. In our second con-
figuration we drop layer FC7 altogether, while reducing FC6
to 512 neurons. Finally, our third configuration uses the de-
fault CaffeNet configuration with both fully connected layers
containing 4096 neurons. All configurations were finetuned
from the CaffeNet model available with Caffe, see [1].

System accuracy. MMoE improves the top-1 classifica-
tion accuracy in all three configurations. The result is strongly
dependent on the value of threshold T , see Figure 3. Classi-
fication accuracy peaks at T = 6, for which our system out-

2Using caffe’s test command, we measured CaffeNet’s top-1 accuracy
at 55.84% on the validation set, the reported accuracy is 57.4% however.

Fig. 4. Probability that the true expert is falsely stopped in
relation to threshold T . The error is significantly lower than
the branching error in Section 3 (6.8%).

performs the baseline over 2.8% and 2.7%2 (in the slim and
default configuration respectively).

Early stopping. Experts are rarely incorrectly stopped,
see Figure 4. For T ≥ 3, a true expert is falsely stopped in
less than 1% of all cases, an improvement over the branching
error discussed in Section 3. Table 3 shows the probabilities
p1, p2 of how often experts C1 and C2 are stopped.

Mediator impact. To show the importance of the Media-
tor, we train a slim configuration lacking mediation. As such,
the system only reaches a top-1 accuracy of 50.52%, about
3.1% lower than the same configuration with mediator.

Complexity vs. Threshold. The choice of T also influ-
ences how often an expert is run. We show this by evaluat-
ing the average number of parameters that need to be loaded,
see Figure 3. For T = 4, the expected number of parame-
ters is close to the number of parameters when using tradi-
tional Mixture-of-Experts, that is, the complexity of N ex-
perts alone. The number of computational operations, dom-
inated by the Convolutional layers, can be significantly re-
duced by layer sharing as discussed earlier.

5. CONCLUSION AND FUTURE WORK

We propose a mediated expert system for deep convolutional
networks that enables experts to learn on small partitions of a
training set, a case given in an incremental learning scenario.
In detail, experts can be stopped early, where the stopping
point is controlled by a single hyper-parameter, allowing to
adapt to different circumstances in terms of availability of re-
sources. Furthermore, we avoid the branching error that oc-
curs in prior work when training on partitioned datasets.

In order to better underline the benefits of our proposal,
two points are left for our future work. First, a more thorough
evaluation is necessary that was not possible in the scope of
this paper. Second, we believe that the mediator concept can
be developed further in order to reduce computational com-
plexity to a higher degree.
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