
TRAINING DEEP NEURAL-NETWORKS BASED ON UNRELIABLE LABELS

Alan Joseph Bekker and Jacob Goldberger

Bar-Ilan University, Israel

ABSTRACT

In this study we address the problem of training a neural net-
work based on data with unreliable labels. We introduce an
extra noise layer by assuming that the observed labels were
created from the true labels by passing through a noisy chan-
nel whose parameters are unknown. We propose a method
that simultaneously learns both the neural network parameters
and the noise distribution. The proposed method is compared
to standard back-propagation neural-network training that ig-
nores the existence of wrong labels. The improved classifica-
tion performance of the method is illustrated on several stan-
dard classification tasks. In particular we show that in some
cases our approach can be beneficial even when the labels are
set manually and assumed to be error-free.

Index Terms— deep-learning, back-propagation, noisy
labels

1. INTRODUCTION

The presence of class label noise inherent to training sam-
ples has been reported to deteriorate the performance of even
the best classifiers in a broad range of classification problems
[1][2]. It was also observed that noisy labels tend to be more
harmful than noisy attributes [3]. Finding noisy data is re-
lated to the data collection process. Typically, the labels used
to train a classifier are assumed to be unambiguous and accu-
rate. However, this assumption often does not hold since the
labels provided by human judgments are subjective. Many
of the largest image datasets have been extracted from social
networks. Because these datasets images are labeled by non-
expert users, building a consistent model on a precisely la-
beled training set is very tedious. Mislabeling examples have
been reported even in critical applications such as biomedical
datasets where the available data are restricted [4]. A very
common approach with noisy datasets is to remove the sus-
pect samples in a preprocessing stage or have them relabeled
by a data expert [5]. However, these methods are not scalable
and hold the risk of removing crucial examples that may be
very significant for small datasets.

Robust noise variants have been proposed for the most
common classifiers such as logistic-regression and SVM

A. J. Bekker is funded in part by the Intel Collaborative Institute for
Computational Intelligence (ICRI-CI).

[6][7]. Natarajan et al. [8] proposed a generic unbiased
estimator for binary classification with noisy labels. They
developed a surrogate cost function that can be expressed by
a weighted sum of the original cost functions, and provided
asymptotic bounds for performance. Grandvalet and Ben-
gio [9] addressed the problem of missing labels that can be
viewed as an extreme case of noisy label data. They suggested
a semi-supervised algorithm that encourages the classifier to
predict the non-labeled labels with high confidence by adding
a regularization term to the cost function.

In spite of the huge success of deep learning there are
not many studies that have explicitly attempted to address the
problem of Neural Net (NN) training using data with unreli-
able labels [10][11][12]. Larsen et al. assumed a single noise
parameter that can be calculated by adding a new regulariza-
tion term and cross validation. Mnih and Hinton [10] pro-
posed a more realistic noise model that depends on the true
label. However, they only considered the binary classification
case. Sukhbaatar and Fergus [12] recently proposed adding a
constrained linear layer at the top of the softmax layer, they
have shown that only under some strong assumptions the lin-
ear layer can be interpreted as the transition matrix between
the true and noisy (observed) labels and the softmax output
layer as the true probabilities of the labels.

Unlike previous work, e.g. [13][12][10] in our framework
we assume no clean data are available to estimate the noise
parameters. We define a probabilistic model for the transfor-
mation from true labels to noisy labels and derive a learning
scheme based on the EM algorithm. In the E-step we estimate
the true labels and in the M-step we apply a back-propagation
learning algorithm using the current label estimation. As a
by-product of the algorithm we also obtain a parametric de-
scription of the noise distribution. The improved results of
the proposed approach are demonstrated on several datasets.

2. TRAINING NN WITH NOISY LABELS

Assume we want to train a multi-class neural-network soft-
classifier p(y = i|x;w) where x is the feature vector and w
is the network parameter-set. We further assume that in the
training process we cannot directly observe the correct label
y. Instead, we only have access to a noisy version of it de-
noted by z. In our approach the noise generation is modeled
by a parameter θ(i, j) = p(z = j|y = i). The noise distribu-

2682978-1-4799-9988-0/16/$31.00 ©2016 IEEE ICASSP 2016

tion is unknown and we want to learn it as part of the training
phase. The probability of observing a noisy label z given the
feature vector x is:

p(z = j|x;w, θ) =
k∑

i=1

p(z = j|y = i; θ)p(y = i|x;w)

where k is the number of classes. The model is illustrated in
the following diagram:

Neural-Network

w

noisy channel

θ

x y z

Assume the neural network classifier we are using is
based on non-linear intermediate layers followed by a soft-
max output layer used for soft classification. Denote the
non-linear function applied on an input x by h = h(x) and
denote the soft-max layer by:

p(y = i|x;w) = exp(u>
i h)∑k

j=1 exp(u
>
j h)

, i = 1, ..., k

such that u1, ..., uk are the soft-max parameters which are
subset of the entire network parameter set w.

non-linear function

w\u

soft-max

u

x h y

In the training phase we are given n feature vectors
x1, ..., xn with corresponding unreliable labels z1, ..., zn
which are viewed as noisy versions of the correct hidden
labels y1, ..., yn. The log-likelihood of the model parameters
is:

L(w, θ) =

n∑
t=1

log(

k∑
i=1

p(zt|yt = i; θ)p(yt = i|xt;w))

Based on the training data, the goal is to find both the noise
distribution θ and the Neural Network parametersw that max-
imize the likelihood function. Since the random variables
y1, ..., yn are hidden, we apply the EM algorithm to find the
maximum-likelihood parameter set. The EM-auxiliary func-
tion is:

Q(w0, θ0, w, θ) =

n∑
t=1

k∑
i=1

p(yt = i|xt, zt;w0, θ0) (1)

·(log p(yt = i|xt;w) + log p(zt|yt = i; θ))

such that w0, θ0 are the current parameter values, and we are
looking for w, θ that maximize the EM auxiliary function.

From the auxiliary function we can easily derive the update
procedure of the EM algorithm. In the E-step of each iter-
ation of the EM algorithm we estimate the hidden true data
labels based on the noisy labels and the current parameters:

cti = p(yt = i|xt, zt;w0, θ0) (2)

=
p(zt|yt = i; θ0)p(yt = i|xt;w0)∑
j p(zt|yt = j; θ0)p(yt = j|xt;w0)

=
θ0(i, zt) exp(u

>
i0h0(xt))∑

j θ0(j, zt) exp(u
>
j0h0(xt))

such that u10, ..., uk0 and h0(x) are the components of the
current parameter value w0. In the M-step we update both
the NN and the noisy channel parameters. The updated noise
distribution has a closed-form solution.

θ(i, j) =

∑
t cti1{zt=j}∑

t cti
, i, j ∈ {1, ..., k} (3)

The k × k matrix θ is a confusion matrix between the soft
estimates of the true label {cti|i = 1, ..., k} and the noisy
labels zt. To find the updated NN parameter w we need to
maximize the following function:

S(w) =

n∑
t=1

k∑
i=1

cti log p(yt = i|xt;w) (4)

which is a soft-version of the likelihood function of the fully
observed case, based on the current estimate of the true labels.

We next derive the back-propagation equations for the
score function (4), which is obtained by the EM algorithm,
to get a better understanding of the learning process. In the
case that the true labels y1, ..., yn are given, the partial deriva-
tives of the likelihood function S(w) =

∑
t log p(yt|xt;w)

with respect to the soft-max parameters are:

∂S

∂ui
=

n∑
t=1

(1{yt=i} − p(yt = i|xt;w))h(xt) (5)

In our case, where only noisy labels z1, ..., zn are provided,
the partial derivatives of the function (4) that we maximize in
the M-step are:

∂S

∂ui
=

n∑
t=1

(p(yt = i|xt, zt;w0, θ0)− p(yt = i|xt;w))h(xt)

(6)
Comparing Eq. (5) and (6) we see that the back-propagation
learning algorithm in the case of noisy labels is very similar
to the fully observed label case. The only difference is that
instead of using the labels values we use estimated labels val-
ues that were computed in the E-step based on the current
network and noise parameter values. Another consequence
of comparing Eq. (5) and (6) is that the computational com-
plexity of the back-propagation algorithm is the same in both
cases.

2683

Table 1. The Noisy Labels Neural-Network (NLNN) algo-
rithm.

Input: Data-points x1, ..., xn ∈ Rd with corresponding
noisy labels z1, ..., zn ∈ {1, ..., k}.
Output: Neural-network parameters w and noise param-
eters θ.

The EM Algorithm iterates between the two steps:

E-step: Estimate true labels based on the current
parameter values (2):

cti = p(yt = i|xt, zt;w, θ)

M-step: Update the noise parameter θ:

θ(i, j) =

∑
t cti1{zt=j}∑

t cti

and train a NN to find w that maximizes the following
function:

L(w) =

n∑
t=1

k∑
i=1

cti log p(yt = i|xt;w)

There is no need, of course, to fully train the NN model
on each EM iteration. Both EM and back-prorogation algo-
rithms are iterative methods and we can alternate between
them. For example we can use standard methods for neural-
network training and update the noise parameter θ after few
passes over the training set. The EM algorithm is a greedy
optimization procedure and is notoriously known to be sen-
sitive to the starting point. Hence a good initialization of the
model parameters is important to achieve good results. We
can use the following strategy to initialize the EM parame-
ters. We first train the NN using standard methods ignoring
the fact that the labels are noisy. The obtained NN parameter
set w is used as an initial value the EM iteration. We then
compute the confusion matrix on the train set and used it as
an initial value for the noise parameter set θ:

θ(i, j) =

∑
t 1{zt=j}p(yt = i|xt;w)∑

t p(yt = i|xt;w)
, i, j ∈ {1, ..., k}

The proposed method, which we dub the Noisy Labels
Neural-Network (NLNN) algorithm, is summarized in Ta-
ble 1.

There have been a number of recent works dealing di-
rectly with the issue of training neural-nets based on training
data with noisy labels. Reed et al. [14] suggested handling
the unreliability of the training data labels by maximizing the
likelihood function: with an additional classification entropy

regularization term. This cost function, which was studied by
Grandvalet and Bengio [9], encourages the model to have a
high confidence in predicting labels. This model is advanta-
geous in cases of unlabeled examples because it enables semi-
supervised learning. This model, however, do not explicitly
address the situation of unreliable data and not provide an ex-
plicit modeling of the noisy pattern. The method we present
is most closely related to the work of Minh and Hinton [10].
They addressed the problem of mislabeled data points in a
particular type of dataset (aerial images). The main differ-
ence is that in their approach they assumed that they do not
learn the noise parameter. Instead they assume that the noise
model can be separately tuned using a validation set or set by
hand. This assumption makes the interaction between the EM
step and the NN learning much easier since each time a data-
point xt is visited we can compute the p(yt = i|xt, zt) based
on the current network parameters and the pre-defined noise
parameters.

3. EXPERIMENTS

In this section, we evaluate the robustness of deep learning
to training data with noisy labels with and without explicit
noise modeling. We used two data-sets with injected label
noise in our experiments. The first is the MNIST database of
handwritten digits, which consists of 28 × 28 images. The
dataset has 60k images for training and 10k images for test-
ing. The second dataset is used for phoneme classification and
is based on the TIMIT acoustic-phonetic continuous speech
corpus which has 1.5M frames for training and 500K frames
for testing. The input features are the Mel frequency cep-
stral coefficients (MFCCs) of the signal, powered by delta
and delta delta coefficients. Context frames were added to
the current time frame as in Mohamed et al. [15]. Overall
each speech frame is represented by 351 features. This is the
standard feature set for phoneme classification and is known
to provide the best classification results.

A similar network architecture and hyper-parameters
were used for both datasets. We used a two hidden layer NN
comprised of 500 and 300 neurons. The learning scheme
is based on a back-propagation algorithm with an adaptive
learning rate combined with momentum. The learning rate
was initialized to 0.01. It was then increased in each epoch
by multiplying the learning rate by 1.05 if the new likelihood
exceeds the old likelihood score by more than 4%. Other-
wise, the learning rate is kept. If the likelihood score was
less than the old likelihood, the learning rate was decreased
by multiplying the learning rate by 0.7. The momentum was
set to 0.5. The number of training epochs was set to 100 for
the naive approach and for the NLNN initialization that was
described above. These settings were kept fixed for all the
experiments described below.

We generated two types of noisy data from clean data
by stochastically changing some of the labels. In the first

2684

Fig. 1. MNIST test data classification accuracy as a function
of fraction of noisy labels with uniform noise.

Fig. 2. MNIST test data classification accuracy as a function
of fraction of noisy labels with permutation type noise.

type we did not distinguish between classes when intention-
ally mislabeling data, and rather choosing new labels from
a uniform distribution over the labels. The original label i
is randomly changed to a different label j with probability
θ(i, j) = p/(k − 1) where k is the number of classes and
p is the percentage of incorrect labels we want to create in
the training data. In the second type we converted each label
with probability p to a different label according to a prede-
fined permutation. The labels of the test data remained, of
course, unperturbed to validate and compare our method to
the regular approach.

MNIST: When training the NLNN model on the MNIST
data, we first initialize the network parameters w with a 100
epochs of back propagation using the noisy data and then we
run the EM algorithm until the likelihood converges (this took
less than 10 iterations). In each iteration we train the NN with
the current estimated labels for 50 epochs. In each iteration
of the EM we start the back-propagation training with random
NN parameters. We found that this strategy works better than
starting the NN training with the parameters obtained in the
previous EM iteration.

Figure 1 and Figure 2 show comparative test errors results
as a function of the fractions of noise for the two noise types
described above. We compared the performance of several
approaches. We first implemented the naive NN training algo-
rithm (ignoring the existence of noise) and compared it to our
model (NLNN) and to a variant of the NLNN model where the

Fig. 3. Phoneme classification accuracy on the TIMIT dataset
as a function of fraction of noisy labels.

correct noise distribution is given and is not updated during
the EM iterations (NLNN true θ). Figure 1 shows that NLNN
significantly outperformed the standard network training ap-
proach for every noise ratio and achieved the same results as
a model where the known distribution was given. Figure 2
shows the accuracy of the MNIST dataset as a function of
the permutation type noise. For a high noise level the NLNN
model accuracy dropped compared to the NLNN true θ but
still achieved better performance than the naive NN.

TIMIT: In this dataset we conducted an experiment us-
ing a uniform noise distribution. Figure 3 shows the phoneme
classification accuracy on the test data as a function of the
noise level. We show the performance of the naive model, our
proposed NLNN model and NLNN model with the true noise
distribution θ. Figure 3 shows that the NLNN model achieves
significantly better classification accuracy than a naive neu-
ral network model that ignores the presence of noisy labels.
In this case of phoneme classification we even obtained a
slightly better result in the noise-free case where we used
the correct phoneme labels provided by the TIMIT dataset.
This is an example of a situation where manual annotation is
subjective and is not error-free. In the case of speech data,
manual phoneme annotation can be noisy because phoneme
boundaries are not defined exactly and co-articulation acous-
tic effects that occur when moving from one phoneme to the
next. Classification performance decreased significantly near
phoneme boundaries.

To conclude, in this paper we proposed an algorithm for
training neural networks based solely on noisy data where the
noise distribution is unknown. We showed that we can reli-
ably learn the noise distribution from the noisy data without
using any clean data which, in many cases, is not available.
The algorithm can be easily incorporated into existing deep
learning implementations. Our results encourage collecting
more data at a cheaper price, since mistaken data labels can
be less harmful to performance. One possible future research
direction would be generalizing our learning scheme to cases
where both the features and the labels are noisy.

2685

4. REFERENCES

[1] D. Nettleton, A. Orriols-Puig, and A. Fornells, “A study
of the effect of different types of noise on the preci-
sion of supervised learning techniques,” Artificial in-
telligence review, 2010.

[2] M. Pechenizkiy, A. Tsymbal, S. Puuronen, and O. Pech-
enizkiy, “Class noise and supervised learning in medical
domains: The effect of feature extraction,” in Computer-
Based Medical Systems (CBMS), 2006.

[3] X. Zhu and X. Wu, “Class noise vs. attribute noise: A
quantitative study,” Artificial Intelligence Review, vol.
22, no. 3, pp. 177–210, 2004.

[4] U. Alon, n. Barkai, D. Notterman, K. Gish, S.and D.
Mack, and A. Levine, “Broad patterns of gene expres-
sion revealed by clustering analysis of tumor and normal
colon tissues probed by oligonucleotide arrays,” Pro-
ceedings of the National Academy of Sciences, vol. 96,
no. 12, pp. 6745–6750, 1999.

[5] C. Brodley and M. Friedl, “Identifying mislabeled train-
ing data,” J. Artif. Intell. Res.(JAIR), vol. 11, pp. 131–
167, 1999.

[6] B. Frénay and M. Verleysen, “Classification in the pres-
ence of label noise: a survey,” IEEE Trans. on Neural
Networks and Learning Systems, vol. 25, no. 5, pp. 845–
869, 2014.

[7] B. Jakramate and A. Kabán, “Label-noise robust logistic
regression and its applications,” in Machine Learning
and Knowledge Discovery in Databases, pp. 143–158.
2012.

[8] N. Natarajan, I. Dhillon, P. Ravikumar, and A. Tewari,
“Learning with noisy labels,” in Advances in Neural
Information Processing Systems (NIPS), 2013.

[9] Y. Grandvalet and Y. Bengio, “Semi-supervised learn-
ing by entropy minimization,” in Advances in Neural
Information Processing Systems (NIPS), 2005.

[10] V. Minh and G. Hinton, “Learning to label aerial images
from noisy data,” in Int. Conf. on Machine Learning
(ICML), 2012.

[11] J. Larsen, L. Nonboe, M. Hintz-Madsen, and K. L.
Hansen, “Design of robust neural network classifiers,”
in Int. Conf. on Acoustics, Speech and Signal Process-
ing, 1998, pp. 1205–1208.

[12] S. Sukhbaatar and R. Fergus, “Learning from noisy
labels with deep neural networks,” in arXiv preprint
arXiv:1406.2080, 2014.

[13] X. Zhu, “Semi-supervised learning literature survey,”
Technical Report 1530, University of WisconsinMadi-
son, 2005.

[14] S. Reed, H. Lee, D. Anguelov, C. Szegedy, D. Erhan,
and A. Rabinovich, “Training deep neural networks
on noisy labels with bootstrapping,” in arXiv preprint
arXiv:1412.6596, 2014.

[15] A .Muhamed, D. Yu, and L. Deng, “Investigation of full-
sequence training of deep belief networks for speech
recognition.,” in Interspeech, 2010, pp. 2846–2849.

2686

