
LEARNING DEEP NEURAL NETWORK USING
MAX-MARGIN MINIMUM CLASSIFICATION ERROR

Ziyong Feng, Zenghui Sun, Lianwen Jin∗

School of Electronic and Information Engineering, South China University of Technology,
Guangzhou, China

f.ziyong@mail.scut.edu.cn, sunfreding@gmail.com, lianwen.jin@gmail.com∗

ABSTRACT

Deep neural networks (DNNs) have recently achieved state-
of-the-art performance on various tasks, such as image clas-
sification, handwriting recognition, text spotting, and speech
recognition. Most of these DNNs use softmax regression
and cross-entropy loss to calculate the loss function for op-
timization. However, the loss function is merely expected to
raise the output of the true class and reduce others without
distinction. In this paper, we propose a new max-margin
minimum classification error (M3CE) training method, which
is inspired by the traditional minimum classification error,
but is more appropriate for training DNNs. The proposed
M3CE aims not only to increase the posteriori of the true
class but also to decrease the output of the most confused
class, which can cover any shortage of the cross-entropy
loss. We evaluate the M3CE on two popular datasets, MNIST
and CIFAR-10. Experimental results show that the M3CE
complements cross-entropy efficiently and achieves better
performance.

Index Terms— Deep neural network, softmax regression,
minimum classification error, max-margin.

1. INTRODUCTION

Recently, deep neural networks (DNNs) have attracted sig-
nificant attention, because they can automatically and simul-
taneously discover low- and high-level features, and have
achieved promising results on various databases. Compared
with traditional neural networks, DNNs implemented using
stacking restricted Boltzmann machines (RBMs) [1] and reg-
ularized auto-encoders [2] perform much better owing to the
use of a deeper multilayer structure and various new tech-
nologies such as greedy layer-wise unsupervised pre-training
and the backpropagation (BP) algorithm. Moreover, consid-
ering the topological structure, convolutional neural networks
(CNNs) [3] are constructed using a convolutional and pool-
ing operation, but are trained without layer-wise unsupervised
pre-training [4]. Owing to their specialized structure, CNNs
are more suitable for computer vision tasks. Therefore, on

various databases, they have achieved state-of-the-art perfor-
mance [5], [6], [7]. However, many parameters are needed
to tune a deep CNN given the vast data. This leads to high
computational cost even when using extremely fast graphics
processing units (GPUs) [4] [8]. When using either RBMs or
CNNs, fine-tuning plays an important role in the entire train-
ing procedure and an appropriate loss function can improve
training speed as well as the final performance.

Generally, softmax, which provides a posteriori distribu-
tion, is used as the output layer of a DNN, while cross-entropy
is employed as the criterion for constructing the loss function,
given that the posteriori distribution from softmax should be
close to the target distribution (one-hot code). The loss func-
tion calculated by softmax and cross-entropy can be interpret-
ed as a generalization in terms of logistic loss from a two-class
problem to a multiclass problem. Although this loss func-
tion is widely used for training DNNs and has been evaluated
on different tasks and networks, it treats all outputs of false
classes consistently. To reduce the misclassification proba-
bility, the minimum classification error (MCE) was proposed
as a criterion for traditional neural networks [9]. The MCE
was applied to several recognition tasks and achieved the best
performance for speech recognition at the time. However, be-
cause the sigmoid function can easily be saturated, it is not
appropriate for current DNNs.

In this paper, we present a max-margin minimum clas-
sification error (M3CE) derived from the traditional MCE,
and which is more suitable for DNNs. Instead of a sigmoid
function, M3CE employs a ReLU-like function to backpropa-
gate more discriminative information to low-level layers. We
also combine M3CE with cross-entropy according to gradi-
ent analysis. We evaluated the M3CE on two deep learning
benchmark datasets, MNIST [3] and CIFAR-10 [10]. The
experiments show that M3CE complements cross-entropy
well and achieves higher state-of-the-art performance on
CIFAR-10.

The rest of the paper is organized as follows. In Section
2, we review related work on different loss functions for neu-
ral networks. Then, we introduce the proposed M3CE and
analyze it in Section 3. Section 4 presents the experimental

2677978-1-4799-9988-0/16/$31.00 ©2016 IEEE ICASSP 2016

results on MNIST and CIFAR-10. Section 5 concludes the
paper.

2. RELATE WORK

The mean-squared error (MSE) was used as a typical criteri-
on function for shallow neural networks in the 1990s. Giv-
en a training set {(x1, y1), ..., (xN , yN)}, xn ∈ RD, yn ∈
{1, 2, ...,K}, it expects the outputs of the last layer to be close
to the targets. The loss function is defined as

LMMSE =
1

N

N∑
n=1

∥f(xn; Θ)− yn∥22, (1)

where f(·; Θ) is the prediction function parameterized by net-
work parameter Θ, and yn is the K-dimensional target vector
whose true label entry is one, while the other labels are zero.
Generally, a sigmoid function is employed as the output acti-
vation function. However, for classification tasks, this cannot
provide a posteriori distribution.

With the advent of deep learning, it is standard to use soft-
max and cross-entropy to construct the loss function for clas-
sification problems [4], [11]. The loss function is defined as

LCE = − 1

N

N∑
n=1

yT
n logpn, (2)

where log(·) is an element-wise logarithmic function, and
pn ∈ RK is the output of softmax. Suppose zn ∈ RK is the
input for softmax; the k-th entry pnk of pn is defined as

pnk =
expznk∑K
j=1 expznj

. (3)

Obviously, unlike the sigmoid function, softmax can pro-
vide class probabilities, which are more suitable for classi-
fication problems. By combining softmax with the cross-
entropy function, a neural network can be trained quickly and
achieves higher performance [12], [13], as compared with
MSE.

To minimize misclassification probability, Juang and
Katagiri [9] incorporated the MCE into artificial neural net-
works. There are three steps in defining an MCE function: (1)
define a discriminant function gk(z) for each class k; (2) give
a misclassification measure for each sample; and (3) specify
a loss function for the measure in (2). The final loss function
can be the average of the loss of each sample. In [14], the
misclassification measure is defined as

dk(z) =
1

Nk

∑
l∈Sk

(gl(z)− gk(z)), (4)

where Sk = {l|gl(z) > gk(z)} contains the confused classes,
and Nk denotes the number of confused classes. However, be-
cause of the variation in Nk, the misclassification measure is

not differentiable, which is not desirable in gradient descent.
Therefore, Juang and Katagiri [9] proposed a more appropri-
ate misclassification measure,

dk(z) = −gk(z) + maxl ̸=kgl(z). (5)

In step (3), the loss function of the misclassification measure
is specified as logistic loss,

ℓk(dk) =
1

1 + exp(−αdk + β)
. (6)

Finally, the MCE loss function is defined as the empirical av-
erage loss,

LMCE =
1

N

N∑
n=1

ℓyn(dyn(zn)). (7)

3. MAX-MARGIN MCE

Based on the definition of MCE, we employ softmax regres-
sion as the discriminant function. Therefore, the misclassifi-
cation measure (5) is redefined as

dk(z) =− pk + pq

=− zk∑K
j=1 expzj

+
zq∑K

j=1 expzj
, (8)

where k is the index of the true class and q = argmaxl ̸=kpl
denotes the most confused output of softmax. Generally, lo-
gistic loss (6) is used and the gradient of z is calculated for
use in the BP algorithm.

∂ℓk(dk)

∂z
=

∂ℓk(dk)

∂dk(z)
· ∂dk(z)

∂z

= αℓk(1− ℓk) ·
∂dk(z)

∂z
.

(9)

Remarkably, when z is misclassified, ℓk is close to one and
αℓk(1− ℓk) tends to zero. Thus, ∂ℓk(dk)

∂z is close to 0 and no
gradient is backpropagated to previous layers, which is harm-
ful to the training procedure.

It is worth noting that the traditional activation function,
the sigmoid function, is replaced by a non-saturating activa-
tion function ReLU [4], [15], which can speed up the training
procedure and prevent gradient diffusion. Therefore, we use a
ReLU-like non-saturating function as the loss function of the
misclassification measure,

ℓk(dk) = max(0, 1 + dk). (10)

When a correctly classified sample becomes a misclassifica-
tion sample, dk increases from −1 to 1. Thus, the definition
(10) of ℓk (called the max-margin loss) can cause the worst
sample to have the maximum loss without saturation. Since
1 + dk ≥ 0, Eq. (10) can be simplified as

ℓk(dk) = 1 + dk. (11)

2678

-1 0 1
0

1

2

d
k

l k

logisitc

max-margin

square max-margin

Fig. 1. Graphical depiction of logistic loss and our proposed
max-margin loss values.

To set a higher loss for misclassification samples, we extend
this as

ℓk(dk) = (1 + dk)
γ , (12)

where γ is a positive integer. If we set γ = 2, we obtain
the squared max-margin loss. To use backpropagation, we
compute the gradient of Eq. (12):

∂ℓk(dk)

∂z
= γ(1 + dk)

γ−1 · ∂dk(z)
∂z

, (13)

and

∂dk(z)

∂zj
=

 pjϵk, j ̸= k and j ̸= q
pj(ϵk − 1), j = k
pj(ϵk + 1), j = q

, (14)

where ϵk = −dk(z) = pk − pq is the margin. Unlike Eq.
(9), the gradient is not blocked. In Fig. 1, we compare the
traditional logistic loss with our proposed max-margin loss
values. Both Fig. 1 and Eq. (13) show that max-margin loss
provides more error information.

To simplify the analysis, we set γ = 1 and substitute Eq.
(14) into Eq. (13):

∂lk(dk)

∂zj
=

 pjϵk, j ̸= k and j ̸= q
pj(ϵk − 1), j = k
pj(ϵk + 1), j = q

. (15)

We also revisit the gradients of softmax with cross-entropy,

∂lk(dk)

∂zj
=

{
pj − 1, j = k

pj , j ̸= k
. (16)

Obviously, the gradient with respect to the true class is nega-
tive in Eq. (16), but this depends on the margin ϵk in Eq. (15).
If ϵk ∈ (0, 1), only the gradient of the target class is negative.

However, when ϵk ∈ (−1, 0), all gradients are negative ex-
cept for the confused class, which backpropagates the error
signal to the bottom layers, possibly causing unpredictable
mistakes. Hence, we combine cross-entropy and M3CE:

L = aLCE + bLMM , (17)

where the formulation of LMM is the same as Eq. (7), and
the misclassification measure and loss function are defined as
in Eqs. (8) and (12), respectively. Thus, the total gradient
combines the gradients of each loss function.

4. EXPERIMENTS

The proposed M3CE-CE was evaluated on two benchmark
datasets, MNIST and CIFAR-10. We designed different
CNNs for these datasets, each of which is explained below.
We randomly initialized the weights and biases and set the
base learning rate to 0.01 and momentum to 0.9. For train-
ing the CNNs using cross-entropy, the learning rates were
annealed during training by a factor of 10. All models were
trained by the widely used Caffe [8]. For comparison, we
set up three experiments: (1) using cross-entropy (CE) on its
own, which is equivalent to setting b = 0 in loss function
(17); (2) employing cross-entropy for pre-training and then
tuning the model with M3CE (a = 1, b = 0 → a = 0, b = 1),
referred to as M3CE-CE switched (M3CE-CEs); and (3) us-
ing cross-entropy and M3CE-CE simultaneously (a = 1,
b = 1), referred to as M3CE-CE combined (M3CE-CEc).

4.1. MNIST

MNIST [3] is a standard benchmark dataset used in machine
learning. It contains ten classes of handwritten digits with
60,000 training images and 10,000 test images.

LeNet5 [3] is a typical CNN, originally designed specifi-
cally for MNIST. Therefore, we adopted the following CNN:
1x28x28-20C5-MP2-50C5-MP2-DR0.5-500N-DR0.5-10N,
expressed in the style used by Cireşan et al. [5] to describe
CNN architecture. The efficient regularization technique
dropout [4] was applied in the top layers with a dropout rate
of 0.5, denoted as DR0.5. We set the mini-batch size to 128.
Fig. 2 shows the results of CE, M3CE-CEs, and M3CE-CEc.
By incorporating M3CE, the network converges more quickly
and achieves a lower error rate of 0.45%, reducing the error of
cross-entropy to 11.8%. In other words, M3CE complements
the cross-entropy loss function.

We compared our method with previous works using a s-
ingle network without data augmentation. According to Table
1, all results are fairly similar, but both our method and Max-
out Networks achieved the lowest error rate. This is note-
worthy given that we used a very simple CNN architecture,
LeNet5.

2679

10
3

10
4

10
5

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

Iterations

T
e
s
t

E
rr

o
r

(%
)

CE [0.51%] M3CE-CEs [0.47%] M3CE-CEc [0.45%]

Fig. 2. Test error rates on MNIST dataset.

Table 1. Test error rates on MNIST
Method Test Error(%)

DSN-Softmax [16] 0.51
Stochastic Pooling [17] 0.47

Network in Network [18] 0.47
Maxout Networks [19] 0.45

M3CE-CEc 0.45

4.2. CIFAR-10

The CIFAR-10 dataset [10] consists of ten classes of nat-
ural images with 50,000 training images and 10,000 test
images, which are color images of size 32 × 32. Because
the CIFAR-10 is more challenging than MNIST, we em-
ployed a deeper CNN: 3x24x24-64C3-64C3-MP2-DR0.25-
128C3-128C3-MP2-DR0.25-256C3-256C3-256C3-256C3-
MP2-DR0.25-1024N-DR0.5-1024N-DR0.5-10N, inspired by
VGG-Net [20]. We set the mini-batch size to 64. For data
preprocessing, we used global contrast normalization and
ZCA whitening, which have been adopted in [18] and [19].
Besides, random cropping with a crop size of 24 and flipping
can be viewed as data augmentation to be applied in the train-
ing phase to prevent overfitting. In the test phase, we merely
cropped the center of each test image.

We obtained test error rates of 7.44% using cross-entropy,
but got 7.31% and 7.18% using M3CE-CEs and M3CE-CEc,
respectively. We sampled five images to illustrate the effect
of the proposed method, as shown in Fig. 3. In the first row,
a dog image is misclassified as a frog and the probability of
dog is lower than that of frog and cat. However, if we train
the CNN by M3CE-CEc, the probabilities of frog and cat are
decreased and the probability of dog is increased. This means
our method can provide more discriminative information than
pure cross-entropy. This is consistent with the assumptions

Confused class True class Others

CE M3CE-CEc

Fig. 3. Comparison of softmax outputs trained by CE and
M3CE-CEc.

Table 2. Test error rates on CIFAR-10
Method Test Error(%)

Maxout Networks [19] 9.38
DropConnect [21] 9.32

Network in Network [18] 8.81
DSN [16] 8.22

CE 7.44
M3CE-CEs 7.31
M3CE-CEc 7.18

and motivations for this work.
In Table 2, we compare our approaches with other meth-

ods. Since we employ a deeper CNN (14 layers), the ba-
sic method, CE, outperforms the other methods. It’s also
found that M3CE-CEc improves the performance further us-
ing the proposed M3CE. Our methods surpass those in previ-
ous works with M3CE-CEc achieving the best performance.

5. CONCLUSION

In this paper, we proposed a novel max-margin MCE for train-
ing DNNs. M3CE is derived from traditional MCE, but pro-
vides more discriminative information. We modified MCE
by introducing a max margin criterion inspired by ReLU to
be more suitable for training DNNs. We combined cross-
entropy and the proposed M3CE together to achieve better
performance. We evaluated the proposed method M3CE-CEc
on two standard benchmark datasets, MNIST and CIFAR-10
and achieved promising results.

2680

6. REFERENCES

[1] G. E. Hinton and R. R. Salakhutdinov, “Reducing the
dimensionality of data with neural networks,” Science,
vol. 313, no. 5786, pp. 504–507, 2006.

[2] P. Vincent, H. Larochelle, Y. Bengio, and P. A. Man-
zagol, “Extracting and composing robust features with
denoising autoencoders,” in Proceedings of the 25th In-
ternational Conference on Machine Learning, 2008, pp.
1096–1103.

[3] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner,
“Gradient-based learning applied to document recogni-
tion,” Proceedings of the IEEE, vol. 86, no. 11, pp.
2278–2324, 1998.

[4] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Ima-
genet classification with deep convolutional neural net-
works,” in Neural Information Processing Systems,
2012, pp. 1097–1105.

[5] D. Ciresan, U. Meier, and J. Schmidhuber, “Multi-
column deep neural networks for image classification,”
in Computer Vision and Pattern Recognition, 2012 IEEE
Conference on. IEEE, 2012, pp. 3642–3649.

[6] C. Farabet, C. Couprie, L. Najman, and Y. LeCun,
“Learning hierarchical features for scene labeling,” Pat-
tern Analysis and Machine Intelligence, IEEE Transac-
tions on, vol. 35, no. 8, pp. 1915–1929, 2013.

[7] Y. Sun, Y. Chen, X. Wang, and X. Tang, “Deep learning
face representation by joint identification-verification,”
in Neural Information Processing Systems, 2014, pp.
1988–1996.

[8] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long,
R. Girshick, S. Guadarrama, and T. Darrell, “Caffe:
Convolutional architecture for fast feature embedding,”
in Proceedings of the ACM International Conference on
Multimedia. ACM, 2014, pp. 675–678.

[9] B. H. Juang and S. Katagiri, “Discriminative learning
for minimum error classification,” IEEE Trans Signal
Proc, vol. 40, no. 12, pp. 3043–3054, 1992.

[10] A. Krizhevsky and G. Hinton, “Learning multiple layers
of features from tiny images,” M.S. thesis, University of
Toronto, 2009.

[11] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and A. Ra-
binovich, “Going deeper with convolutions,” arXiv
preprint arXiv:1409.4842, 2014.

[12] M. J. J. Holt and S. Semnani, “Convergence of back-
propagation in neural networks using a log-likelihood

cost function,” Electronics Letters, vol. 26, no. 23, pp.
1964–1965, 1990.

[13] J. J. Hopfield, “Learning algorithms and probability
distributions in feed-forward and feed-back networks.,”
Proceedings of the National Academy of Sciences of the
United States of America, vol. 84, no. 23, pp. 8429–
8433, 1987.

[14] S. Amari, “A theory of adaptive pattern classifiers,”
Electronic Computers, IEEE Transactions on, , no. 3,
pp. 299–307, 1967.

[15] V. Nair and G. E. Hinton, “Rectified linear units im-
prove restricted boltzmann machines,” in Proceedings
of the 27th International Conference on Machine Learn-
ing, 2010, pp. 807–814.

[16] C.-Y. Lee, S. Xie, P. Gallagher, Z. Zhang, and
Z. Tu, “Deeply-supervised nets,” arXiv preprint arX-
iv:1409.5185, 2014.

[17] M. D. Zeiler and R. Fergus, “Stochastic pooling for reg-
ularization of deep convolutional neural networks,” arX-
iv preprint arXiv:1301.3557, 2013.

[18] M. Lin, Q. Chen, and S. Yan, “Network in network,”
arXiv preprint arXiv:1312.4400, 2013.

[19] I. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville,
and Y. Bengio, “Maxout networks,” in Proceedings of
The 30th International Conference on Machine Learn-
ing, 2013, pp. 1319–1327.

[20] K. Simonyan and A. Zisserman, “Very deep convolu-
tional networks for large-scale image recognition,” arX-
iv preprint arXiv:1409.1556, 2014.

[21] L. Wan, M. Zeiler, S. Zhang, Y. LeCun, and R. Fergus,
“Regularization of neural networks using dropconnect,”
in Proceedings of the 30th International Conference on
Machine Learning, 2013, pp. 1058–1066.

2681

