
DEEP DISCRIMINATIVE MANIFOLD LEARNING

Jen-Tzung Chien and Ching-Huai Chen

Department of Electrical and Computer Engineering
National Chiao Tung University, Hsinchu, Taiwan 30010, ROC

ABSTRACT

This paper presents a new non-linear dimensionality reduc-
tion with stochastic neighbor embedding. A deep neural net-
work is developed for discriminative manifold learning where
the class information in transformed low-dimensional space
is preserved. Importantly, the objective function for deep
manifold learning is formed as the Kullback-Leibler diver-
gence between the probability measures of the labeled sam-
ples in high-dimensional and low-dimensional spaces. Dif-
ferent from conventional methods, the derived objective does
not require the empirically-tuned parameter. This objective is
optimized to attractive those samples from the same class to
be close together and simultaneously impose those samples
from different classes to be far apart. In the experiments on
image and audio tasks, we illustrate the effectiveness of the
proposed discriminative manifold learning in terms of visual-
ization and classification performance.

Index Terms— Manifold learning, deep neural network,
discriminative learning, pattern classification

1. INTRODUCTION

Representation learning aims to explore the meaningful mod-
eling of signals which is crucial for signal processing and
machine learning [1]. The primary assumption behind most
learning methods is that the minimum number of factors
needed to describe the variance of dataset is much smaller
than the dimensionality in the original signals [2]. Basically,
the algorithms for learning representation range from linear
transformations, such as principal component analysis (PCA)
and linear discriminant analysis (LDA), to the nonlinear
mappings, such as locally linear embedding [3] and stochas-
tic neighbor embedding (SNE) [4, 5, 6, 7] where many of
them are nonparametric approaches and there is no explicit
mapping function between high-dimensional signal and low-
dimensional representation. Such nonparametric manifold
learning [3, 4] suffers from the generalization problem for
unseen samples. To tackle this problem, the parametric map-
ping was proposed to predict unseen samples [8]. In [9], the
manifold learning using deep neural network (DNN) was de-
veloped to improve the unsupervised representation learning.
The parametric t-distributed SNE was proposed to learn the

parametric mapping based on a DNN such that the represen-
tation for new samples was available. The deep model using
DNN improved the mapping function for manifold learning.

Considering the dimensionality reduction from a proba-
bilistic perspective, the representation learning could be real-
ized by using latent variables based on maximum a posteriori
probability [10]. Several probabilistic latent variable models
such as probabilistic PCA and LDA (PLDA) [11] have been
proposed for parametric manifold learning. When estimat-
ing the model parameters in parametric approaches, the latent
variables are typically assumed to be independent with Gaus-
sian distributions so that the relation between observations
and latent variables is arranged as a linear function and the
resulting solution is computationally efficient. Nevertheless,
the latent variable model could be improved by introducing
the non-Gaussian priors. In general, most manifold learning
methods were performed in unsupervised manner. In this pa-
per, we build a supervised DNN for dimensionality reduction
and pattern classification. A parametric mapping function us-
ing DNN is adopted to conduct a supervised nonlinear trans-
formation for manifold learning. The class labels are treated
as targets in parametric manifold learning to learn the neigh-
bor embedding for low-dimensional representation. The ob-
jective for learning representation is formed as the general-
ized Kullback-Leibler (KL) divergence between the probabil-
ity measures of labeled samples in original and transformed
spaces. Experiments on different tasks illustrate the merit of
proposed method in a sense that the class information is pre-
served in the space with the reduced dimension and model
discrimination.

2. MANIFOLD AND DEEP LEARNING

SNE was developed as a nonlinear unsupervised manifold
learning [4]. Suppose we are given a set of high-dimensional
signals X = {x1, . . . ,xN}. SNE attempts to find the low-
dimensional representations Y = {y1, . . . ,yN} where yn ∈
Rd preserves the pairwise similarity to xn ∈ RD and d < D.
The conditional probability pm|n that xm is a neighbor of xn
is expressed by

pm|n =
exp

(
−‖xn − xm‖2

)∑
t 6=n exp (−‖xn − xt‖2)

. (1)
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Similarly, the conditional probability in low-dimensional rep-
resentation is modeled by

qm|n =
exp

(
−‖yn − ym‖2

)∑
t 6=n exp (−‖yn − yt‖2)

. (2)

pn|n and qn|n are set to zero. Intuitively, the difference be-
tween two sets of probability distributions Pn = {pm|n}Nm=1

and Qn = {qm|n}Nm=1 can be measured by the Kullback-
Leibler (KL) divergence L. SNE is implemented to find low-
dimensional representations Y from high-dimensional obser-
vations X by minimizing the objective function L. Neighbor
embedding of samples in two spaces is naturally preserved
with this nonlinear and nonparametric transformation.

In a symmetric SNE (s-SNE), the pairwise similarities en-
coded in Pn and Qn are measured by the joint probabilities

pnm =
pm|n + pn|m

2N
, qnm =

exp
(
−‖yn − ym‖2

)∑
s

∑
t,t 6=s exp (−‖ys − yt‖2)

.

(3)
In [5], the t-distributed SNE (t-SNE) was implemented
by calculating the pairwise similarity between two low-
dimensional representations

qnm =

(
1 + ‖yn − ym‖2/ν

)− ν+1
2∑

s

∑
t,t 6=s (1 + ‖ys − yt‖2/ν)−

ν+1
2

(4)

where ν is the degree of freedom in Student’s t-distribution.
The crowding problem in conventional SNE model is re-
solved accordingly. Such t-SNE can prevent attracting the
low-dimensional representations mutually close together.

To deal with the unseen data problem, the parametric
mapping function based on DNN can be incorporated for
deep manifold learning. Generally, DNN consists of the con-
nected neurons in many layers which receive the weighted
outputs of the connected neurons in previous layer and pass
their outputs to the connected neurons in next layer. The non-
linear activation function is applied in calculation of neuron
output. A DNN is characterized by its layered structure and
the connection weights. DNN model can be simply seen as
a nonlinear function which maps between input space X and
output space Y , namely f(w,xn) = yn, where w denotes
the weight parameters and xn and yn are the samples in X
and Y , respectively. Therefore, we would like to attain the de-
sired outputs in the reduced-dimensional space by optimally
estimating the weights of DNN from training data. This DNN
is treated as a prediction function for unseen test data. The
procedure of adjusting weights is referred to as DNN train-
ing. Recent works in [9, 12] showed that the improvement
was obtained by applying the deep manifold learning with
the pre-training procedure for the initial weights using the
restricted Boltzmann machine (RBM) [13].

3. DEEP DISCRIMINATIVE MANIFOLD LEARNING

Different from previous works, this paper presents a new deep
supervised manifold learning for pattern classification.

3.1. Supervised manifold learning

Suppose there are a set of high-dimensional data X and their
corresponding labels T = {t1, . . . , tN} collected for super-
vised manifold learning. We consider the assumption behind
PLDA [11] that the members of the same class share the same
latent variable yc which is called the class variable. The point
estimate of class variable ŷc is the variable that maximizes the
posterior distribution, i.e. ŷc = argmaxyn p(yn|xn). Let xn
and xm be two samples from the same class. The probability
that yn is identical to ym equals to one if xn and xm belong
to the same class or with the same target values tn = tm. To
find the corresponding latent variable without using explicit
probability model, we define pnn = 0 and pnm = 1 when
tn = tm and pnm = 0 when tn 6= tm. The pre-assigned prob-
abilities in high-dimensional space P = {pnm} are viewed as
the desired probability values for latent variables given by the
labeled samples. On the other hand, we define the joint prob-
ability of two samples in low-dimensional space as

qnm = exp
(
−‖yn − ym‖k

)
(5)

and qnn = 0. The supervision of training samples is corre-
spondingly provided. According to the above definition, if
tn = tm, yn and ym are imposed to be identical such that the
probability equals to one in the latent space. In Eq. (5), there
is a parameter k > 0 that controls the shape of an exponen-
tially decay function. Smaller k gives a longer tail.

To pursue the latent variables satisfying the probability
assumption for pnm and qnm, we consider the objective func-
tion for elastic embedding [14] and extend it for supervised
manifold learning by minimizing the objective L given by∑
n

∑
m

pnm‖yn − ym‖k + λ
∑
n

∑
m

rnm exp
(
−‖yn − ym‖k

)
(6)

where rnm = 1 − pnm. Given the objective function in
Eq. (6), if pnm equals to one, then yn and ym shall affect
the objective function through the first term. In other words,
the first term forces the latent variables in the same class to
be as close as possible. On the other hand, if yn and ym
are not in the same class, the second term pushes them away.
This circumstance becomes negligible when they have been
far apart. Typically, both cases depend on the tuning pa-
rameters k and λ. The parameter λ governs the trade-off
between the attraction in the first term and the repulsion in
the second term. The objective function in Eq. (6) is rewrit-
ten in a form of generalized KL divergence or I divergence
DI(P‖Q) =

∑
n

∑
m (pnm log (pnm/qnm)− pnm + qnm)

[15] as
L = DI (P‖λR ◦Q) +G(λ) (7)
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where R = {rnm}, Q = {qnm}, ◦ denotes the element-wise
multiplication and G(λ) is defined by∑

n

∑
m

[pnm (log pnm − log λ− log rnm − 1)] . (8)

Minimizing L over Y is equivalent to minimizing the objec-
tive DI (P‖λR ◦Q) over Y because G(λ) is a constant.

3.2. Discriminative objective function

One issue in the objective function of Eq. (6) is the empiri-
cal trade-off parameter λ which should be determined before-
hand. Here, we consider Eq. (7) and propose a new optimiza-
tion objective

min
Y
DKL (P‖R ◦Q) = min

Y

[
min
λ≥0
DI (P‖λR ◦Q)

]
(9)

where KL divergence is defined as DKL(P‖Q) =
∑
n

∑
m

p̃nm log (p̃nm/q̃nm) with p̃nm = pnm/
∑
s

∑
t pst and

q̃nm = qnm/
∑
s

∑
t qst. By expanding Eq. (9) and dropping

off the terms irrelevant to Y , the discriminative objective
function based on SNE (disc-SNE) Ldisc-SNE is derived as

∑
n

∑
m

pnm‖yn − ym‖k +

(∑
s

∑
t

pst

)
× log

∑
n

∑
m

rnm exp
(
−‖yn − ym‖k

)
.

(10)

Notably, the advantage of the objective in Eq. (10) over Eq.
(6) is that there is no need of choosing λ. Parameter λ has
been inherently merged during the optimization of Ldisc-SNE
with respect to Y .

3.3. Optimization procedure

It is important that we adopt a DNN as the parametric
manifold learner for dimensionality reduction over train-
ing samples as well as unseen new samples. The optimal
network weights w in different layers are trained by mini-
mizing the objective Ldisc-SNE by using the training samples
X = {x1, . . . ,xN} and their labels T = {t1, . . . , tN}.
The RPROP algorithm [16] with weight backtracking is
implemented for updating w in an optimization proce-
dure where the gradients of objective function with re-
spect to the weight parameters are calculated according to
∂Ldisc-SNE
∂w =

∑
n
∂Ldisc-SNE
∂yn

∂yn
∂w where ∂Ldisc-SNE

∂yn
is yielded as

∑
m

2k

(
pnm −

∑
s

∑
t pst∑

s

∑
t rstqst

rnmqnm

)
× ‖yn − ym‖

k−2
2 (yn − ym)

(11)

and ∂yn
∂w is estimated through the error back propagation

algorithm. The key difference compared with conventional

DNN is the construction of objective function Ldisc-SNE. Con-
ventional DNN minimizes the sum-of-square-error function
while our model minimizes the KL divergence for elastic
embedding and dimensionality reduction.

3.4. Comparison with other methods

It is interesting to compare the objective functions in different
methods. The proposed objective DKL (P‖R ◦Q) in Eq. (10)
is related to that of the weighted symmetric SNE (ws-SNE)
DKL(P‖M ◦ Q) [15] where P and Q are defined in Eq. (3)
and M is the weighting matrix which is imposed to force the
centroids in different clusters repulsed mutually. This ws-
SNE obtained better performance for manifold learning by
alleviating the crowding problem. In our study, the defini-
tion of P and R is used to map the samples of the same class
into a single low-dimensional representation while preventing
the low-dimensional representations from other classes to be
close each other. A discriminative SNE (also denoted as disc-
SNE) is implemented. In [12], the idea of mapping those sam-
ples from the same class into a single representative sample
was also incorporated in the deep metric learning by means of
collapsing classes, which was named as the d-MCML where
the objective function was proposed in a form of [12]

Ld-MCML ∝
∑
n

∑
m

pnm‖yn − ym‖2

+
∑
n

∑
m

log

∑
s

∑
t,t6=s

exp
(
−‖ys − yt‖2

) .

(12)

Here, the first term aims to map the samples into a single rep-
resentative sample while the second term would like to re-
pulse low-dimensional representations to be apart from each
other. There are two issues in this objective function. The
first one is that the term in the brackets of the second term is
shared for different samples yn and ym in different classes.
The force of repulsion is seen as a fixed value. The second
issue is that the physical meaning of the first term and the
second term are possibly conflicting for those samples in the
same class. However, such issues do not happen in the pro-
posed objective Eq. (10) where the effect of the second term
is individually caused by each pair of samples yn and ym. Ei-
ther the first term or the second term is activating for each data
pair {yn,ym}. Namely, the proposed manifold learning aims
to move all samples of the same class in reduced dimension
space toward the class centroid and also move the samples of
different classes far apart mutually.

4. EXPERIMENTS

4.1. Experimental setup

We conducted the experiments on the MNIST and USPS
handwritten digit datasets and also on the NIST i-vector
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speaker recognition challenge by following the experimental
setups in [9, 12, 17]. For MNIST and USPS, we implemented
the DNN supervised manifold learning which mapped an
image into a two-dimensional sample vector for visualization
using the topology D-500-500-2000-2. For speaker verifica-
tion task, the DNN topology 600-300-300-d was applied to
reduce the dimension of i-vectorD=600 to dimension d=300.
The equal error rate (EER) was examined for speaker veri-
fication and the classification error was measured for image
recognition. RBM pre-training was applied. The RPROP
algorithm with mini-batch size of 100 was implemented. For
comparison, we carried out the s-SNE, t-SNE [5], d-MCML
[12] and the proposed disc-SNE with different k. The 1-
nearest neighbor classifier was applied for image recognition.

(a) s-SNE (b) t-SNE

(c) disc-SNE, k = 2 (d) k = 1 (e) k = 0.5
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Fig. 1. Two-dimensional visualization of test images of
MNIST ((a)-(e)) and USPS ((f)-(h)) using different methods.

4.2. Experimental result

Figures 1(a)-(e) demonstrate the visualization of 10, 000 test
samples in MNIST dataset by s-SNE, t-SNE and disc-SNE
under different k. We can see that the crowding problem is
serious by using s-SNE. The heavy-tail of t-distribution in t-
SNE alleviates such problem in s-SNE. However, using the
class information in SNE algorithm is feasible to move the
test samples of the same class with tendency of closeness in
the low-dimensional space. In case of k = 2, disc-SNE ob-
tains clear separation between classes. When decreasing k, a
heavy-tailed condition is increasing. The separation between
classes is further enhanced but the shape of a class is changed.
Figures 1(f)-(h) show the visualization of 2007 test images
in USPS dataset using t-SNE, d-MCML and dis-SNE with
k = 0.5. Disc-SNE visualizes better than the other methods.

MNIST (2) MNIST (10) USPS (2) USPS (10)

s-SNE 38.7% 5.7% 36.4% 7.6%
t-SNE 11.6% 5.0% 21.9% 7.5%

d-MCML 4.4% 1.9% 13.3% 6.0%
disc-SNE 4.0% 1.6% 10.3% 5.3%

Table 1. Comparison of classification error rates. The number
in brackets indicates the reduced dimension d.

Baseline PCA LDA s-SNE t-SNE d-MCML disc-SNE
7.26 % 7.92 % 6.08 % 7.15% 6.85% 5.91% 5.85%

Table 2. Comparison of EERs for speaker verification.

Table 1 reports the classification error rates of test im-
ages by using different dimensionality reduction methods
with the reduced dimensions d=2 and 10. MNIST and USPS
datasets are used. This table shows that the supervision in
manifold learning does improve the feature discrimination
and accordingly reduce the recognition error in different con-
ditions. Classification performance is improved by increasing
d. The supervised learning using d-MCML and disc-SNE
with k = 0.5 performs better than unsupervised learning
using s-SNE and t-SNE. The lowest classification error is
achieved by using disc-SNE. On the other hand, the com-
parison of EER (%) using different approaches to reduce the
dimensionality of i-vector is shown in Table 2. The cosine
distance scoring is performed for speaker recognition. Di-
mensionality reduction using PCA and LDA is implemented
for comparison. PCA, s-SNE and t-SNE correspond to un-
supervised methods while LDA, d-MCML and disc-SNE are
seen as supervised method. Different dimensionality reduc-
tion methods are superior to baseline system with i-vectors.
The supervised methods perform better than unsupervised
methods. The proposed disc-SNE obtains the lowest EER
among different methods.

5. CONCLUSIONS

This paper presented a supervised and parametric manifold
learning method based on the stochastic neighbor embedding.
The proposed method considers the condition that the samples
from the same class share the same latent representation. Us-
ing a DNN as the mapping function, the proposed objective
is optimized to transform the samples of the same class into a
single representative centroid and simultaneously map those
samples from different classes to be far apart. A meaning-
ful objective is realized for discriminative manifold learning.
The experiments on image and audio tasks show that the pro-
posed manifold learning reflects the clustering structure of the
classes in low-dimensional visualization, achieves the goal of
extracting the discriminative features, and successfully im-
proves the performance of pattern recognition. This frame-
work could be further extended by building a hybrid transfor-
mation and classification deep neural network.

2675



6. REFERENCES

[1] Y. Bengio, A. Courville, and P. Vincent, “Representa-
tion learning: A review and new perspectives,” IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 35, no. 8, pp. 1798–1828, Aug. 2013.

[2] E. Levina and P. J. Bickel, “Maximum likelihood esti-
mation of intrinsic dimension,” in Advances in Neural
Information Processing Systems, 2004, pp. 777–784.

[3] S. T. Roweis and L. K. Saul, “Nonlinear dimensionality
reduction by locally linear embedding,” Science, vol.
290, no. 5500, pp. 2323–2326, 2000.

[4] G. E. Hinton and S. T. Roweis, “Stochastic neighbor
embedding,” in Advances in Neural Information Pro-
cessing Systems, 2002, pp. 857–864.

[5] L. Maaten and G. Hinton, “Visualizing data using t-
SNE,” Journal of Machine Learning Research, vol. 9,
pp. 2579–2605, Nov. 2008.

[6] Z. Yang, I. King, Z. Xu, and E. Oja, “Heavy-tailed sym-
metric stochastic neighbor embedding,” in Advances
in Neural Information Processing Systems, 2009, pp.
2169–2177.

[7] K. Bunte, S. Haase, M. Biehl, and T. Villmann,
“Stochastic neighbor embedding (SNE) for dimension
reduction and visualization using arbitrary divergences,”
Neurocomputing, vol. 90, pp. 23–45, 2012.

[8] Y. Bengio, J.-F. Paiement, P. Vincent, O. Delalleau,
N. Le Roux, and M. Ouimet, “Out-of-sample exten-
sions for lle, isomap, mds, eigenmaps, and spectral clus-
tering,” in Advances in Neural Information Processing
Systems, 2004, vol. 16, pp. 177–184.

[9] L. Maaten, “Learning a parametric embedding by pre-
serving local structure,” in Proc. of International Con-
ference on Artificial Intelligence and Statistics (AIS-
TATS), 2009, pp. 384–391.

[10] S. Watanabe and J.-T. Chien, Bayesian Speech and Lan-
guage Processing, Cambridge University Press, 2015.

[11] S. J. D. Prince and J. H. Elder, “Probabilistic linear
discriminant analysis for inferences about identity,” in
Proc. of IEEE International Conference on Computer
Vision (ICCV), 2007, pp. 1–8.

[12] R. Min, L. Maaten, Z. Yuan, A. Bonner, and Z. Zhang,
“Deep supervised t-distributed embedding,” in Proc. of
International Conference on Machine Learning (ICML),
2010, pp. 791–798.

[13] G. E. Hinton, “A practical guide to training restricted
Boltzmann machines,” in Neural Networks: Tricks of
the Trade (2nd ed.), pp. 599–619. 2012.

[14] M. A. Carreira-Perpinan, “The elastic embedding algo-
rithm for dimensionality reduction,” in Proc. of Interna-
tional Conference on Machine Learning (ICML), 2010,
pp. 167–174.

[15] Z. Yang, J. Peltonen, and S. Kaski, “Optimization equiv-
alence of divergences improves neighbor embedding,”
in Proc. of International Conference on Machine Learn-
ing (ICML), 2014, pp. 460–468.

[16] M. Riedmiller and H. Braun, “A direct adaptive method
for faster backpropagation learning: The RPROP algo-
rithm,” in Proc. of IEEE International Conference on
Neural Networks, 1993, pp. 586–591.

[17] C. S. Greenberg, D. Bansé, G. R. Doddington,
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