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ABSTRACT

We study the problem of high-dimensional covariance matrix

estimation from partial observations. We consider covariance

matrices modeled as Kronecker products of matrix factors,

and rely on observations with missing values. In the absence

of missing data, observation vectors are assumed to be i.i.d

multivariate Gaussian. In particular, we propose a new

procedure computationally affordable in high dimension to

extend an existing permuted rank-penalized least-squares

method to the case of missing data. Our approach is

applicable to a large variety of missing data mechanisms,

whether the process generating missing values is random

or not, and does not require imputation techniques. We

introduce a novel unbiased estimator and characterize its

convergence rate to the true covariance matrix measured by

the spectral norm of a permutation operator. We establish

a tight outer bound on the square error of our estimate, and

elucidate consequences of missing values on the estimation

performance. Different schemes are compared by numerical

simulations in order to test our proposed estimator.

Index Terms— covariance matrices, Kronecker product,

missing data, high-dimensional

1. INTRODUCTION

The problem of covariance estimation with partial observations

is fundamental, and occurs in variety of applications, such as

gene expression profile analysis [12, 16], machine learning

[7], climate studies [14], and graphical models [9]. In

practice, measurements may not be fully available in their

entirety, which results in an observation data vector with

missing entries. We can view the observation vector as

having less entries provided that missing entries take place at

fixed positions of the vector. However, missing entries may

occur at positions that randomly change with time, requiring

more complex estimation methods.

Recently, [15] has proposed a convex optimization

approach to estimate covariance matrices with Kronecker

Product (KP) structure and has derived a tight high-dimensional

square error (SE) convergence rate. This method, termed

the permuted rank-penalized least squares (PRLS), shows

promising results in the spatial-temporal linear least-squares

prediction of multivariate wind speed datasets. The PRLS

approach however is not applicable in a large variety of

problems entailing different patterns of misses.

In this paper, we generalize PRLS to the case of missing

data. In particular, we seek to estimate high dimensional

covariance matrices with KP structure through partial

observations. We develop a novel method for the treatment

of missing data, which requires neither imputing missing

observations [11] nor discarding any available observations

to recover the sought covariance matrix. Notably, this

novel approach utilizes the empirical covariance matrix

(ECM), even though the latter is not available as a result

of missing observations. Furthermore, we show that our

estimator achieves the same SE convergence rate as [15],

wherein all observations are fully captured. In addition,

we establish that the estimator convergence rate holds with

a different probability depending on the missing patterns.

Interestingly, our analysis reveals circumstances under which

high convergence probability is guaranteed.

Notation: Column vectors and matrices are indicated by

bold lower-case and upper-case letters, respectively. Symbol

x(i) indicates the ith entry of vector x and X(i, j) denotes

the (i, j)th element of matrix X. We use X
T to denote

the transpose of matrix X, vec(X) the vectorized form of

matrix X (stacking the columns of X into one column),

‖X‖F the Frobenius norm of matrix X, ‖X‖∗ the nuclear

norm of matrix X, ‖X‖∞ the largest singular value of matrix

X, and ‖X‖0 the smallest singular value of matrix X. The

operator ◦ indicates the Hadamard product, and ⊗ stands for

the Kronecker product.

For a d1d2 × d1d2 matrix X, {X[i, j]}d1

i,j=1 represents its

d2×d2 block submatrices, where submatrices are in the form

of X[i, j] = X (1 + (i− 1)d2 : id2, 1 + (j − 1)d2 : jd2).

We define the permutation map P : Rd1d2×d1d2 → R
d2
1×d2

2 ,

in which the (i − 1)d1 + j row of P(X) is equal to

vec(X[i, j])
T

. We use vec−1(·) and P−1(·) to denote the

inverse operator for vec(·) and P(·), respectively. The matrix

X
(α) is formed with (i, j) entry X(i, j)

α
and similarly, x(α)

has its i-th entry x(i)
α

. We let Sd
..= {X ∈ R

d1×d : X =
X

T } denote the set of real symmetric matrices, S+
d the set of
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real symmetric positive semidefinite matrices, S++
d the set of

real symmetric positive definite matrices, and Nd
..= {x ∈

R
d : xT

x = 1} the unit Euclidean sphere.

2. SYSTEM MODEL

Let {xt}nt=1, xt ∈ R
d, be multivariate Gaussian vectors with

zero mean and unknown covariance matrix Σ0, uncorrelated

across time. We observe n i.i.d random vectors {zt}nt=1 as

zt = Γtxt, 1 ≤ t ≤ n (1)

where Γt is defined as the d × d diagonal matrix with

Γt(i, i) = 0, 1 ≤ i ≤ d, if xt(i) is missing and 1 otherwise.

We emphasize that our analysis is not limited to any particular

missing mechanism such as missing completely at random

(MCR), missing at random (MR), or not missing at random

(NMR) [1]. Particularly, we consider model (1) for all

possible arrangements of Γt since several random and

non-random processes could simultaneously give rise to

missing values and even further, we may be unable to model

the missing data mechanism [4].

Our goal is to estimate Σ0 given partial observations

{zt}nt=1. We assume that (i) the positions of missing data,

Γt for all 1 ≤ t ≤ n, are known; and (ii) the covariance

matrix can be written as a sum of KPs of lower dimensional

pairs of matrices

Σ0 =
r
∑

i=1

Ai ⊗Bi (2)

where {Ai}ri=1 are d1 × d1 linearly independent matrices,

{Bi}ri=1 are d2 × d2 linearly independent matrices, and d =
d1d2. We additionally assume that the factor dimensions d1
and d2 are given. The integer r denotes the total number

of KPs in the summation, and is less than min(d21, d
2
2) [15].

The mentioned model (2) can be interpreted as a low rank

principal component decomposition, where its components

are KPs, but neither orthogonal nor normalized. Such KP

models show up naturally when the correlation is structured

in individual dimensions (e.g., space and time, or transmit and

receive sides of multiple antenna channels).

Given observations with no missing data, a sufficient

statistic to estimate the true covariance matrix Σ0 is the ECM

Σ̂0 =
1

n

n
∑

t=1

xtx
T
t (3)

Albeit unbiased, Σ̂0 cannot be obtained since we only have

access to zt. We thus consider the following alternative

Σ
Γ
n =

1

n

n
∑

t=1

ztz
T
t . (4)

This estimator concentrates around its mean, ΣΓ
0

..= E[ΣΓ
n],

which could be far away from Σ0, and leads to unacceptably

large biases in parameter estimates [3, 5]. To remove the

introduced bias, let us first rewrite Σ
Γ
0 as [c.f. (1)]

Σ
Γ
0 = E[

1

n

n
∑

t=1

ztz
T
t ] = E[

1

n

n
∑

t=1

Γtxtx
T
t Γt]

=
1

n

n
∑

t=1

ΓtΣ0Γt = W ◦Σ0 (5)

where W is the weight matrix with entries W(i, j) =
1
n

∑n
t=1 Γt(i, i)Γt(j, j). Although entries of W belong to

the interval [0, 1], we assume W(i, j) ∈ (0, 1] which holds

provided that all variables are successfully measured in at

least one time point. Therefore (5) can be represented as

Σ0 = W
(−1) ◦ΣΓ

0 (6)

leading to the following unbiased estimator of Σ0 when the

dataset contains missing observations [cf. (4)]

Σ̂n
..= W

(−1) ◦ΣΓ
n. (7)

This unbiased estimator not only takes advantage of all

available information to estimate Σ0, but also can be

employed whether missing patterns are random or not, so long

as they are not systematic. The model (7) suffers from high

variance when the number of samples, n, is smaller than the

number of dimensions, d. To tackle this challenge, a low rank

approximation to Σ̂n is usually considered. The popular low

rank approximation relies on principal component analysis

(PCA), which involves eigen-decomposition of Σ̂n to retain

the top r principal components. The PCA-based estimator

then takes the form of

Σ̂
PCA

n =
r
∑

i=1

σ2
i viv

T
i (8)

where σi is the ith largest singular value associated with

the right singular vector vi. In high-dimensional settings,

however, PCA can be severely affected by excessive bias

[6]. This is mainly connected to known inconsistency of

the sample eigenvalues and eigenvectors as d increases.

Another issue is the possible high complexity associated

with eigen-decomposition. The fact that the estimator does

not account for the low-dimensional structure of (2) indicates

that better estimator may be possible.

In [10], an alternative method to derive the low rank

covariance estimation is proposed as the solution of the

following penalized minimization problem (see also [11]):

Σ̂
λ

n
..= arg min

Σ∈S
p
++

‖Σ̂n −Σ‖2F + λTr (Σ) (9)

in which λ is a tuning parameter and Tr (Σ) is equivalent to

the l1-norm on the eigenvalues of Σ. The estimator (9) is

developed when all Γt(i, i) are i.i.d Bernoulli (0-1) random

variables with parameter δ and independent of {xt}nt=1. For

this scenario, an unbiased estimator Σ̂n is simplified to

(δ−1 − δ−2)diag(ΣΓ
n) + δ−2

Σ
Γ
n. (10)

Corollary 1 in [10] proves that the solution to the convex

problem (9) converges to Σ with a minimax optimal rate.
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In this paper, we put forth a penalized empirical risk

minimization problem analogous to (9), but applicable to

any Γt, and generalize PRLS [15] to accommodate misses,

cf. models (1) and (2). Specifically, we propose the following

convex optimization formulation to estimate the permuted

version of Σ0:

(P1) P̂
γ
n = arg min

P∈R
d2
1
×d2

2

‖P̂n −P‖2F + γ‖P‖∗

where P̂n
..= P(Σ̂n) (cf. Notation), P ..= P(Σ), and

γ is a rank-controlling parameter. The term ‖P̂n −P‖2F is

equivalent to ‖Σ̂n −Σ‖2F (Theorem 2.1 in [8]). To shed light

on the need of ‖P‖∗, let us consider (2). It is easy to show that

P0
..= P(Σ0) =

∑r
i=1 vec(Ai)vec(Bi)

T
. This suggests that

P must be of rank r at most, and therefore (P1) is a convex

relaxation of

min
P∈R

d2
1
×d2

2

‖P̂n −P‖2F

subject to rank(P) ≤ r. (11)

In particular, to obtain the convex relaxation of the

NP-hard problem (11), we leverage recent developments

in compressive sampling [13] and substitute the ℓ0-norm with

its ℓ1-norm surrogate, which here corresponds to the nuclear

norm ‖P‖∗.

It is well known that (P1) can be solved in closed form

as [2]

P̂
γ
n =

min(d2
1,d

2
2)

∑

i=1

max
(

0, σi(P̂n)−
γ

2

)

uiv
T
i (12)

where σi(P̂n) is the ith largest singular value of P̂n

corresponding to the left and right singular vectors ui and

vi, respectively. The answer P̂
γ is essentially transformed

back to the original matrix space R
d×d as Σ̂

γ

n
..= P−1(P̂γ

n)
(cf. Notation). In the next section, we explore the symmetry

and positive definiteness of our estimate Σ̂
γ

n.

3. SPECTRAL NORM BOUND

In this section, we establish a bound on the spectral norm of

Dn
..= P̂n − P0. We will take advantage of this result to

derive a tight outer bound on the squared estimation error. 1

Theorem 1. Consider ǫ ∈ [0, 1
2 ). Define N ..=

max (d1, d2, n) and C0
..= max (C1CP , C2

√
CP ), where

CP
..= max

u∈N
d2
1
,v∈N

d2
2

u
(2)P

(

W
(−2)

)

v
(2).

If q ≥ max (
√

2C1CP ln(1 +
2
ǫ
), 2C2

√
CP ln(1 +

2
ǫ
)), then,

1Due to space limitation, all proofs are omitted and can be found in the

journal version of this work on Arxiv.

it holds with probability at least 1− 2N− q
2C0 that

‖Dn‖∞ ≤
q‖Σ0‖∞
1− 2ǫ

max

(

d21 + d22 + logN

n
,

√

d21 + d22 + logN

n

)

.

(13)

In the proof, the following lemma turns out to be useful.

The lemma allows us to generalize the operator norm bound

on the permuted ECM (3), derived in [15], to our unbiased

estimator (7).

Lemma 1. Consider observation vectors {zt}nt=1 as

introduced in the System Model. Let u = (u1, u2, . . . , ud2
1
)
T ∈

Nd2
1
, v = (v1, v2, . . . , ud2

2
)
T ∈ Nd2

2
, and recall Dn (see

Section 3). We then have for all δ ≥ 0,

P
(∣

∣u
T
Dnv

∣

∣ ≥ δ
)

≤ 2e
−n δ2

C1CP ‖Σ0‖2∞+C2

√
CP δ‖Σ0‖∞ . (14)

Clearly, Theorem 1 demands no condition on Σ0.

However, for the theorem to be of any practical interest,

we require the outer bound in (13) to be small, leading to

n ≥ βCP (d
2
1 + d22 + logN) (15)

where β > 0 is a sufficiently large constant number.

Condition (15) reveals the impact of missing data, CP ,

on the number of measurements sufficient to guarantee an

accurate approximation to the spectral norm of Σ0. We note

that the required number of samples does not dramatically

grow as a response to missing data. This is because

CP ≤ maxi,j W
(−2)(i, j) is a small number in a variety

of applications.

4. SE BOUND

Here, we establish a tight outer bound on the SE

‖Σ̂γ

n −Σ0‖
2

F . This result is built using a bound on the

Frobenius norm of ‖P̂n −P0‖
2

F , and the fluctuation of Dn

measured by the spectral norm in Theorem 1.

Theorem 2. Choose

γ =
2q‖Σ0‖∞
1− 2ǫ

max

(

d21 + d22 + logN

n
,

√

d21 + d22 + logN

n

)

where the introduced parameters are as in Theorem 1. It then

holds that with probability at least 1− 2N− q
2C0 ,

‖Σ̂γ

n −Σ0‖
2

F

≤ inf
P:rank(P)≤r

‖P−P0‖2F +
(1 +

√
2)

2

4
γ2rank(P) (16)

Theorem 2 provides insight on the tuning of the

regularization parameter γ. Clearly, the choice of γ depends

on ‖Σ0‖∞, which is generally unknown. Thus, we suggest

using ‖Σ̂n‖∞ instead, so that γ can be specified based on the

available information.
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Fig. 1. SE performance normalized with respect to ‖Σ0‖2F versus the number of available samples n. The Generalized PRLS,

Σ̂n, and the Generalized ECM, Σ̂n, are derived using 100-dimensional observation vectors with 10 missing entries (left), 20

missing entries (center), and 30 missing entries (right)

Given that Σ0 obeys the model (2), the estimation error

minP:rank(P)≤r ‖P−P0‖2F is zero. Therefore for large

enough n, Theorem 2 offers that the SE ‖Σ̂γ

n −Σ0‖
2

F is

of order r
d2
1+d2

2+logN

n
, with probability not less than 1 −

2N− q
2C0 . Indeed, this asymptotic SE convergence rate of the

covariance estimate with partial observations coincides with

one achieved in [15], where all observations are available.

However, the probability 1 − 2N− q
2C0 exhibits a change,

that is the consequence of missing data. Specifically, q
and C0 have greater values, compared to the non-missing

case. Furthermore, the larger q causes the regularization

parameter γ to increase, placing a greater emphasis on the

rank constraint in (P1).

The order of mean-square error (MSE) convergence rate

for the standard sample covariance matrix is
d2
1d

2
2

n
, which is

clearly less than the convergence rate of Σ̂n. Therefore, we

realize from Theorem 2 that the SE convergence rate of (P1)

is significantly lower than the MSE convergence rate of the

unbiased sample covariance matrix Σ̂n, provided that rank

r ≪ min(d21, d
2
2).

We finally deduce from Theorem 2 that the solution of

(P1) takes a structure similar to (2) to satisfy the infimum

(16), where each term in the expansion, Ai and Bi, can be of

arbitrary rank. This freedom, nevertheless, can not be offered

by PCA since each term is limited to rank one.

5. NUMERICAL RESULTS

In order to provide a quantitative illustration of the results

in this paper, we compare the SE performance obtained

by the PRLS (solution of (4) in [15]), the Generalized

PRLS (solution of (P1)), the ECM (equation (3)), and the

Generalized ECM (equation (7)). We emphasize that the

PRLS and ECM methods can not tolerate missing values

while the Generalized PRLS and the Generalized ECM are

applicable to missing data.

We construct the true covariance matrix Σ0 employing

model (2) with d1 = d2 = 10 and r = 3. Factors Ai

and Bi take the form of SST , S is a square random matrix

whose columns follow a Gaussian distribution, which results

in positive definite Σ0. We then generate 100-dimensional

observation vectors based on the Gaussian distribution with

zero mean and covariance matrix Σ0. To include missing

values, we randomly force 10, 20, and 30 entries of each

generated vector to be zero. For these three scenarios, the SE

performance as a function of sample size is shown in Figure 1.

As predicted by Theorem 2, the Generalized PRLS performs

quite close to the PRLS when 10 and 20 percent of entries are

missing. Furthermore for datasets containing a large number

of missing values, such as right panel in Figure 1, we still

achieve an acceptable performance in comparison with the

PRLS. We finally observe that the Generalized PRLS notably

outperforms the ECM and Generalized ECM.

6. CONCLUSIONS

We have generalized the PRLS method to datasets with

missing values. The novel estimator is applicable to a large

variety of missing data patterns, such as MCR, MR, and

NMR, as long as all variables are observed in at least one

time point. We performed an analysis of the concentration

of measure phenomenon for observation vectors that are not

multivariate Gaussian due to the presence of missing data.

Using this result, we were able to establish a spectral norm

bound along with a SE bound to illustrate the performance

of our estimator. We have established that our generalized

PRLS achieves the same convergence rate as the PRLS, but

it holds with a different probability because of missing data.

We observed from numerical results that the Generalized

PRLS preforms quite close to the full-data PRLS even with

a significant percentage of missing data.
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