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ABSTRACT

We propose an optimization framework for performing online Non-
negative Matrix Factorization (NMF) in the presence of outliers,
based on `1 regularization and stochastic approximation. Due to the
online nature of the algorithm, the proposed method has extremely
low computational and storage complexity and is thus particularly
applicable in this age of BigData. Furthermore, our algorithm shows
promising performance in dealing with outliers, which previous on-
line NMF algorithms fail to cope with. Convergence analysis shows
the dictionary learned by our algorithm converges to that learned
by its batch counterpart almost surely, as data size tends to infinity.
We show numerically on a range of face datasets that our algorithm
is superior to the state-of-the-art NMF algorithms in terms of run-
ning time, basis representations and reconstruction of original im-
ages. We also observe that our algorithm performs well even when
the density of outliers reaches 40%. We provide explanations behind
this seemingly surprising result.

Index Terms— Online Learning, Nonnegative Matrix Factor-
ization, Scalable Methods, Dimensionality Reduction

1. INTRODUCTION

Nonnegative Matrix Factorization (NMF) is a popular dimension-
ality reduction [1] and data clustering method [2], due to its parts-
based, non-subtractive interpretation of the learned basis [3]. Many
algorithms have been proposed for NMF, including multiplicative
updates [3], block principal pivoting [4], projected gradient descent
[5] and alternating nonnegative least squares [6]. However, all these
algorithms fall in the class of batch NMF algorithms. This class of
algorithms has two major limitations. First, in this age of BigData,
real-world datasets are high-dimensional and contain a large number
of samples. Thus, the computational time and storage space incurred
by batch algorithms are prohibitive. In addition, when new data
points arrive batch algorithms have to perform computation from
scratch whereas it makes more sense to simply update the solutions
obtained previously. Second, when data are contaminated by out-
liers (for example, intense salt noise in images due to acquisition
imperfections), reasonable basis vectors cannot be learned in gen-
eral. Thus the underlying subspace cannot be recovered reliably.

To overcome these two limitations, in recent years, algorithms
have been proposed to tackle each limitation separately. For the
first limitation (large-scale datasets), many online NMF (ONMF) al-
gorithms have been proposed, including [7–12]. These algorithms
achieve successes in different applications, such as visual tracking
[8,12] and document clustering [11]. For the second limitation (out-
liers), (batch) robust NMF (RNMF) algorithms [13–17] have been
developed to simultaneously remove outliers and learn basis repre-
sentations from the recovered subspace. Although each aforemen-
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tioned algorithm, be it online NMF or robust NMF, solves one prob-
lem, as we show later, it will suffer from the other problem. Thus,
we need to devise a new and unified algorithm that can overcome
both limitations simultaneously.

In this paper, we introduce such an algorithm called online NMF
in the presence of outliers (ONMFO). This algorithm aims to remove
the outliers while performing online learning, so we are able to learn
the parts-based basis representation as if we have uncorrupted data.
Convergence analysis shows the dictionary learned by our algorithm
converges to that learned by its batch counterpart almost surely, as
data size tends to infinity. To the best of our knowledge, thus far,
online NMF algorithms specifically designed to handle outliers have
not been considered in any previous works. We show, through exten-
sive numerical simulations on three well-known face datasets, that
(i) the running time of ONMFO is significantly less than that of
RNMF; (ii) the learned basis vectors of ONMFO are comparable to
that learned by RNMF, and are intuitively more representative of the
parts of human faces than ONMF and PCA-based online algorithms;
and (iii) the image reconstruction results of ONMFO are slightly in-
ferior to that of RNMF, but are superior to other algorithms. More-
over, ONMFO performs well even when the outlier density reaches
40%. We provide explanations for this seemingly surprising result.

2. PROBLEM FORMULATION

2.1. Notations

In the following, we use capital boldface letters to denote matrices.
In particular, we use V, W, H and R to denote data matrix, dictio-
nary matrix, coefficient matrix and outlier matrix respectively, such
that V ≈WH+R. V, W, H and R are all nonnegative with di-
mensions F ×N , F ×K, K×N and F ×N respectively. Here F ,
K and N denote the observed dimension, the (known) latent dimen-
sion and the number of data samples respectively. We use lower-case
boldface letters to denote vectors. Specifically, we use v, w, h and
r to denote the columns of V, W, H and R, respectively. Given a
nonnegative matrix X, its i-th column is denoted by xi and (i, j)-th
entry by Xi,j . Moreover, we denote its Frobenius norm by ‖X‖F ,
and `1,1 norm by ‖X‖1,1 =

∑
i,j Xi,j . Inequality x ≥ 0 or X ≥ 0

denotes entry-wise nonnegativity. For arithmetic operations, we use
· to denote the Hadamard product and / to denote entry-wise quo-
tient (division) between matrices.

2.2. Cost Functions

In this work, we intend to develop a scalable, online method to learn
a reasonable basis representation of streaming data contaminated by
entry-wise outliers. In other words, we aim to learn the basis repre-
sentation (matrix) W by minimizing the effects of outliers. In this
work, an outlier is defined to be an entry corrupted by a gross addi-
tive nonnegative component. Let t be a time index. At time t, our
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optimization problem is formulated as follows:

min
1

t

t∑
i=1

1

2
‖vi −Wthi − ri‖2F + λ ‖ri‖1

subject to Wt ≥ 0,h1, . . . ,ht ≥ 0, r1, . . . , rt ≥ 0, (1)

where λ denotes the regularization weight. In (1), Wt denotes the
updated dictionary matrix at time t, and hi and ri denote learned
coefficients and outliers at time i . We use `1 regularization on ri to
enforce it to be sparse.

Equivalently, (1) can be solved in two steps

Wt = argmin
W≥0

ft(W), where ft(W) =
1

t

t∑
i=1

`(vi,W), (2)

and

`(vi,W) = min
h≥0,r≥0

1

2
‖vi −Wh− r‖22 + λ ‖r‖1 . (3)

We develop algorithms in Section 3.2 to minimize the empirical
cost ft(W). However, for the purpose of analysis (in Section 3.3),
we focus on the expected cost over the distribution P of i.i.d. data
samples, i.e.,

min
W

f(W) = Ev∼P [`(v,W)] = lim
t→∞

ft(W) w.p. 1. (4)

We show in Theorem 3 as t → ∞ , Wt learned by our algorithm
will converge to the optimal solution of (4) almost surely.

3. OPTIMIZATION ALGORITHMS

In this section we first derive a batch algorithm for NMF with `1,1
regularization. Based on it, we derive a corresponding online al-
gorithm using ideas from Section 2.2. We also show the proposed
online algorithm has nice convergence properties, i.e., the dictionary
matrix learned by it converges asymptotically to the optimal solution
of (4) almost surely, as data size tends to infinity.

3.1. Batch Optimization Algorithms

In this section we derive the optimization algorithms for minimizing
the following problem

min
W≥0,H≥0,R≥0

1

2
‖V −WH−R‖2F + λ ‖R‖1,1 . (5)

In the literature of batch robust NMF, only [17] considered a similar
formulation as (5). However, in this work we impose nonnegativity
constraint on R and derive a new unified multiplicative update algo-
rithm for W, H and R. This algorithm is different from the method
used in [17]. Our strategy is to first hypothesize a multiplicative up-
date algorithm using a heuristic approach as in [3]. Then we prove
the cost function in (5) is nonincreasing under the updates.

First, we propose the following multiplicative updates using the
heuristic approach in [3] and block coordinate descent framework:

W = W̃ · VH>

(W̃H+R)H>
, (6)

H = H̃ · W>V

W>(WH̃+R)
, (7)

R = R̃ · V

WH+ R̃+ λF×N

, (8)

Algorithm 1 Online NMF with outliers (ONMFO)
Input: Data matrix V, regularization weight λ, initial dictionary
matrix W0

for t = 1 to N do
1) Observe sample vt.
2) Learn coefficient vector ht and outlier vector rt based on

Wt−1 iteratively, using (16) and (17)

{ht, rt} = argmin
h≥0,r≥0

1

2
‖vt −Wt−1h− r‖22 + λ ‖r‖1 . (11)

3) Update the sufficient statistics

At := At−1 + vth
>
t , (12)

Bt := Bt−1 + hth
>
t , (13)

Ct := Ct−1 + rth
>
t . (14)

4) Update dictionary matrix Wt iteratively using (18)

Wt = argmin
W≥0

1

t

t∑
i=1

1

2
‖vi −Whi − ri‖22 + λ ‖ri‖1 (15)

End for
Output: Dictionary matrix WN

where λF×N is an F ×N matrix with each entry equal to λ. Here
W̃ denotes the previous value of W in a sequence of iterations. H̃
and R̃ have similar meanings.

Next, we show the cost function in (5) is non-increasing under
the updates in (6) to (8), based on the majorization-minimization
framework (see [18] for details). Under such framework, it suffices
to find auxiliary (upperbound) functions for W, H and R and verify
the updates minimize the auxiliary functions. We do so in the next
two lemmas, whose proofs are deferred to the extended version.

Lemma 1 Let F (h) = 1
2
‖v −Wh− r‖22 + λ ‖r‖1, then

F̃ (h|h̃) =
1

2
h>Mh−v>Wh+

1

2

(
r>Wh̃+

∥∥v′∥∥2
2
+ 2λ ‖r‖1

)
(9)

is an auxiliary function forF (h), where M = diag
(

W>Wh̃+W>r

h̃

)
and v′ = v − r. Here X = diag(x) denotes the diagonal matrix
formed from the entries of the vector x.

Lemma 2 Let G(r) = 1
2
‖v −Wh− r‖22 + λ ‖r‖1, then

G̃(r|r̃) = 1

2
r> (K+ I) r− v>r

+
1

2

(
‖v −Wh‖22 + (Wh)> r̃+ λ ‖r̃‖1

)
(10)

is an auxiliary function of G(r), where K = diag
(

Wh+λF×1

r̃

)
.

Minimizations on (9) and (10) result in updates (7) and (8). Due
to symmetry between W and H, (6) can be easily obtained.

3.2. Online Optimization Algorithms

Since we only have vt at time t, we cannot solve (1) exactly. There-
fore in this section we derive an online optimization algorithm that
approximately solves (1) based on the stochastic approximation
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framework (e.g., Mairal et al. [19]). This technique approximately
optimizes (1) in two steps. First, at time t, after observing vt, we
first iteratively learn ht and rt based on Wt−1 by solving (3). Based
on (7) and (8), we have the following update rules for one iteration

h = h̃ · W>
t−1v

W>
t−1Wt−1h̃+W>

t−1r
, (16)

r = r̃ · v

Wt−1h+ r̃+ λF×1
. (17)

Next, after obtaining ht and rt, we update Wt from Wt−1 by min-
imizing the cost with respect to all past samples indexed by i ≤ t.
Based on (6), we have the following update rule for one iteration

W = W̃ · At

W̃Bt +Ct

, (18)

where At,Bt and Ct are sufficient statistics and defined as

At =

t∑
i=1

vih
>
i , Bt =

t∑
i=1

hih
>
i , Ct =

t∑
i=1

rih
>
i .

This means after learning ht and rt, we update these sufficient statis-
tics and may discard ht and rt henceforth. In this way, we up-
date Wt in an online manner without accessing any of the past data
{vi,hi, ri}ti=1. This reduces the storage complexity tremendously,
since only the sufficient statistics and Wt need to be stored. A com-
plete algorithm is shown in Algorithm 1.

3.3. Convergence Analysis

Theorem 3 Assume

1. The distribution P in (4) has a closed and bounded support.

2. The initial matrix W0 in Algorithm 1 have full column rank.

3. The function

f̃t(W) =
1

t

t∑
i=1

1

2
‖vi −Whi − ri‖2F + λ ‖ri‖1 , (19)

an upper bound for ft(W), is strongly convex in W.

Then the sequence {Wt} converges to a stationary point of (4) en-
trywise almost surely.

Intuitively, this theorem suggests for large-scale streaming data, our
online algorithm can achieve almost the same performance as its
batch counterpart. Since we are dealing with a nonconvex optimiza-
tion problem, we can only provide convergence guarantee to a sta-
tionary point of (4).

Proof Sketch (1) We show f̃t(Wt) converges almost surely (a.s.)
by showing it is a quasi-martingale. (2) We show ‖Wt −Wt−1‖F =
O(1/t) a.s. (3) We show f(Wt) converges a.s. by showing
f(Wt) − f̃t(Wt) converges a.s. to zero. (4) We show the se-
quence {Wt} converges to W∗ entrywise a.s., by showing Wt

satisfies the optimality condition of (4) as t→∞.
Note that previous works [9, 19, 20] provide similar theoretical

guarantees, but due to different objective functions, nonnegativity
constraints and different optimization algorithms, our analysis is dif-
ferent from that in all previous works. In particular, we enforce spar-
sity on outlier vector r instead of coefficient vector h, thus we need
not assume the solution for the LASSO problem is unique as in [19].

Also, compared to [20], we have a different set of optimality condi-
tions of (3) due to nonnegativity on h and r. Similarly, these con-
ditions are also different from that in [9] due to outliers. Moreover,
the differences between our method to update dictionary Wt (cf.
(6)) with that in [9, 19, 20] introduces many other differences in the
proof. Details are defered to the extended version.

4. EXPERIMENTS

4.1. Experiment Setup

In our experiments, we used three datasets, namely the ORL face
dataset [21], the UMIST face dataset [22] and the PIE face dataset
[23, 24]. ORL, UMIST and PIE have 400, 300 and 3000 images
respectively. Images are resampled to 32 × 32 pixels for ORL and
UMIST and 20 × 20 pixels for PIE.

For implementation, the maximum gray level of all images in
these three datasets was set to 50 and all pixel values were normal-
ized accordingly. For each dataset, we randomly added entry-wise
nonnegative outliers with density ρ ∈ {10%, 20%, 30%, 40%} to
each image, to simulate both sparse and dense outliers. All out-
liers were drawn i.i.d. from a uniform distribution U [30, 50]. If the
resultant pixel value exceeded the maximum gray level of 50, we
thresholded it to 50.

4.2. Comparison to Other Algorithms

In this section we compare the performance of our algorithm ON-
MFO against other three classes of algorithms, namely, RNMF
ONMF and ORPCA. We select one representative algorithm for each
class, namely, our batch algorithm (in Section 3.1) for RNMF, [9]
for ONMF and [20] for ORPCA. We use our own algorithm for
RNMF to better demonstrate the differences between online and
batch algorithms, since both of them use multiplicative updates.

To make a fair comparison, we ran all online algorithms (ON-
MFO, ONMF and ORPCA) for two passes on each face dataset. We
fixed the latent dimensionality K = 49 for all algorithms, following
the convention of [3]; in fact, K can be learned automatically using
the algorithm proposed in [25]. Furthermore, we fixed λ = 1 in our
algorithm throughout all tasks. Each data point is an average result
of 10 random initializations.

The running time of all algorithms on each dataset are shown in
Figure 1. From Figure 1, we can observe the running time of ON-
MFO exhibit minimal variations across all outlier densities and they
are the second shortest overall. Although ORPCA has a shorter run-
ning time than ONMFO, as we show later, it significantly underper-
forms ONMFO in basis representations and image reconstruction.
This is because images are nonnegative data and NMF-type algo-
rithms are more capable to deal with them.

Next we compare the basis learned by the four algorithms on the
ORL dataset. We show results for ρ = 10% and ρ = 40% (in Fig-
ure 2 and Figure 3 respectively), in order to compare settings with
sparse and dense outliers. When the outliers are sparse (ρ = 10%),
the basis learned by ONMFO is comparable to that by RNMF. Both
bases are local and appear to be free of outliers. In contrast, the basis
learned by ONMF appear to be noisy and not very local. When the
outliers are dense (ρ = 40%), somewhat surprisingly, we still man-
age to learn a local representation with most of the outliers removed.
Note that RNMF has a slightly cleaner and more local representa-
tion, since it solves (1) exactly. In contrast, the basis learned by
ONMF are largely contaminated by outliers, so that meaningful fa-
cial parts are hardly observed. We also notice in both cases, ORPCA
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Fig. 1. Runnning time of all four algorithms in seconds.

(a) ONMF (b) ONMFO

(c) RNMF (d) ORPCA

Fig. 2. Basis representations of all four algorithms on the ORL
dataset with outlier density 10% in one initialization.

fails to learn parts-based basis vectors.
Finally we compare the quality of image reconstruction of all

algorithms. We define average reconstruction error Eavg as

Eavg =
1

FN

∥∥∥Ṽ −WH
∥∥∥2
F
, (20)

where Ṽ denotes the original set of images without outliers. Eavg

directly measures the extent of outlier removal, hence the quality
of image reconstruction. (Note that the definition (20) is also valid
for ORPCA.) Results are shown in Figure 4. From it, we observe
that our algorithm slightly underperforms RNMF but outperforms
the other two significantly. Similar to basis representations, as ρ
increases, Eavg produced by ONMFO only degrades gently.

4.3. Discussions

We discuss two issues pertaining to the experiments. The first con-
cerns the selection of the regularization weight λ. This is a long-
standing problem in RNMF and so far no work has provided a prin-
cipled way to select λ. As observed empirically, the performance of
ONMFO was not sensitive to λ. Thus, for simplicity, we set λ = 1.

(a) ONMF (b) ONMFO

(c) RNMF (d) ORPCA

Fig. 3. Similar to Figure 2 with outlier density 40%.
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Fig. 4. Average reconstruction errors of all four algorithms.

Next, we explain why our algorithm (ONMFO) is able to main-
tain a reasonable performance when outliers are dense. This relates
to the subspace recovery problem in the presence of outliers. In [26],
the authors showed if the original data matrix Ṽ is low-rank and
the support of outliers are uniformly distributed on Ṽ, the subspace
spanned by columns of Ṽ can be recovered up to constant outlier
density ρ̃ with high probability, by solving

min ‖Ṽ‖∗ + λ̃ ‖R‖1,1 (21)

subject to Ṽ +R = V

In [27], the authors further added the Frobenius loss term in (5) to
(21) and provided the same recovery guarantee. In addition, [28]
showed ρ̃ can be any value in (0, 1) under some weak assumptions,
i.e., the corruptions can be dense. We observe the only difference be-
tween (1) and (21) is the nuclear norm term ‖Ṽ‖∗, which enforces
Ṽ to be low–rank. By fixing K to a small value in our experiments,
which is a common practice in other NMF works, we indeed enforce
Ṽ to be low rank. This suggests our batch (RNMF) and online (ON-
MFO) algorithms are capable of dealing with a constant fraction of
dense outliers. However, we remark that for real data, the technical
conditions in [26] are not exactly satisfied, hence subspace recovery
and outlier removal may be imperfect (shown in Figure 4).
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