BATCH NORMALIZED RECURRENT NEURAL NETWORKS

César Laurent*', Gabriel Pereyra**', Philémon Brakel*, Ying Zhang* and Yoshua Bengio*'

* Université de Montréal
**University of Southern California
" CIFAR Fellow

ABSTRACT

Recurrent Neural Networks (RNNs) are powerful models for
sequential data that have the potential to learn long-term de-
pendencies. However, they are computationally expensive to
train and difficult to parallelize. Recent work has shown that
normalizing intermediate representations of neural networks
can significantly improve convergence rates in feed-forward
neural networks [1]. In particular, batch normalization, which
uses mini-batch statistics to standardize features, was shown
to significantly reduce training time. In this paper, we inves-
tigate how batch normalization can be applied to RNNs. We
show for both a speech recognition task and language mod-
eling that the way we apply batch normalization leads to a
faster convergence of the training criterion but doesn’t seem
to improve the generalization performance.

Index Terms— batch normalization, RNN, LSTM, opti-
mization

1. INTRODUCTION

Recurrent Neural Networks (RNNs) have received renewed
interest due to their recent success in various domains, includ-
ing speech recognition [2], machine translation [3, 4] and lan-
guage modelling [5]. The so-called Long Short-Term Mem-
ory (LSTM) [6] type RNN has been particularly successful.
Often, it seems beneficial to train deep architectures in which
multiple RNNs are stacked on top of each other [2]. Un-
fortunately, the training cost for large datasets and deep ar-
chitectures of stacked RNNs can be prohibitively high, of-
ten times an order of magnitude greater than simpler mod-
els like n-grams [7]. Because of this, recent work has ex-
plored methods for parallelizing RNNs across multiple graph-
ics cards (GPUs). In [3], an LSTM type RNN was distributed
layer-wise across multiple GPUs and in [8] a bidirectional
RNN was distributed across time. However, due to the se-
quential nature of RNNS, it is difficult to achieve linear speed
ups relative to the number of GPUs.

Another way to reduce training times is through a bet-
ter conditioned optimization procedure. Standardizing or

LBoth authors contributed to this work equally.

978-1-4799-9988-0/16/$31.00 ©2016 IEEE

2657

whitening of input data has long been known to improve
the convergence of gradient-based optimization methods [9].
Extending this idea to multi-layered networks suggests that
normalizing or whitening intermediate representations can
similarly improve convergence. However, applying these
transforms would be extremely costly. In [1], batch normal-
ization was used to standardize intermediate representations
by approximating the population statistics using sample-
based approximations obtained from small subsets of the
data, often called mini-batches, that are also used to obtain
gradient approximations for stochastic gradient descent, the
most commonly used optimization method for neural network
training. It has also been shown that convergence can be im-
proved even more by whitening intermediate representations
instead of simply standardizing them [10]. These methods
reduced the training time of Convolutional Neural Networks
(CNNs) by an order of magnitude and additionallly provided
a regularization effect, leading to state-of-the-art results in
object recognition on the ImageNet dataset [11]. In this pa-
per, we explore how to leverage normalization in RNNs and
show that training time can be reduced.

2. BATCH NORMALIZATION

In optimization, feature standardization or whitening is a
common procedure that has been shown to reduce conver-
gence rates [9]. Extending the idea to deep neural networks,
one can think of an arbitrary layer as receiving samples from
a distribution that is shaped by the layer below. This distribu-
tion changes during the course of training, making any layer
but the first responsible not only for learning a good represen-
tation but also for adapting to a changing input distribution.
This distribution variation is termed Internal Covariate Shift,
and reducing it is hypothesized to help the training procedure
[1].

To reduce this internal covariate shift, we could whiten
each layer of the network. However, this often turns out to
be too computationally demanding. Batch normalization [1]
approximates the whitening by standardizing the intermediate
representations using the statistics of the current mini-batch.
Given a mini-batch x, we can calculate the sample mean and
sample variance of each feature k along the mini-batch axis

ICASSP 2016



I
Xy = — Xi ks (1)
m 4
=1
a“':l (Xip — Xp)? 2)
k m — i,k k)

where m is the size of the mini-batch. Using these statistics,
we can standardize each feature as follows
R, = 3)
Vo te€
where € is a small positive constant to improve numerical sta-
bility.

However, standardizing the intermediate activations re-
duces the representational power of the layer. To account for
this, batch normalization introduces additional learnable pa-
rameters y and 3, which respectively scale and shift the data,
leading to a layer of the form

BN (x1) = Xk + Br. “4)

By setting 7y, to o and [ to Zy, the network can recover the
original layer representation. So, for a standard feedforward
layer in a neural network

y = ¢(WX + b)a )

where W is the weights matrix, b is the bias vector, x is the
input of the layer and ¢ is an arbitrary activation function,
batch normalization is applied as follows

y = ¢(BN(Wx)). (©)

Note that the bias vector has been removed, since its effect
is cancelled by the standardization. Since the normalization
is now part of the network, the back propagation procedure
needs to be adapted to propagate gradients through the mean
and variance computations as well.

At test time, we can’t use the statistics of the mini-batch.
Instead, we can estimate them by either forwarding several
training mini-batches through the network and averaging their
statistics, or by maintaining a running average calculated over
each mini-batch seen during training.

3. RECURRENT NEURAL NETWORKS

Recurrent Neural Networks (RNNs) extend Neural Net-
works to sequential data. Given an input sequence of vec-
tors (x1,...,Xr), they produce a sequence of hidden states
(hy,...,hy), which are computed at time step ¢ as follows

hy = ¢(Wrhi1 + Woxy), (N

where W, is the recurrent weight matrix, W, is the input-
to-hidden weight matrix, and ¢ is an arbitrary activation func-
tion.

If we have access to the whole input sequence, we can use
information not only from the past time steps, but also from
the future ones, allowing for bidirectional RNNs [12]

— — — —

hy=¢(Wprh, 1 + W;xy), ®)

— — — —

hy =¢(Wprh, 1 + Wyxy), )
e —

ht:[htl ht]a (10)

where [x : y] denotes the concatenation of x and y. Finally,
we can stack RNNs by using h as the input to another RNN,
creating deeper architectures [13]

h! = (W h! | + W, hi™h). (11)

In vanilla RNNS, the activation function ¢ is usually a sig-
moid function, such as the hyperbolic tangent. Training such
networks is known to be particularly difficult, because of van-
ishing and exploding gradients [14].

3.1. Long Short-Term Memory

A commonly used recurrent structure is the Long Short-Term
Memory (LSTM). It addresses the vanishing gradient prob-
lem commonly found in vanilla RNNs by incorporating gat-
ing functions into its state dynamics [6]. At each time step,
an LSTM maintains a hidden vector h and a cell vector c
responsible for controlling state updates and outputs. More
concretely, we define the computation at time step ¢ as fol-
lows [15]:

ir = sigmoid(Wp;hy—1 + W;x4) (12)
f, = sigmoid(Wpshy—1 + Whrxy) (13)
¢t =1 ©ci1 +i © tanh(Wpchy g + Weexy)  (14)
o; = sigmoid(Wpohi 1 + Wraxt + Weoct) (15)
h; = o; ® tanh(c;) (16)

where sigmoid(-) is the logistic sigmoid function, tanh is the
hyperbolic tangent function, Wy,. are the recurrent weight
matrices and W . are the input-to-hiddent weight matrices.
iz, f; and o, are respectively the input, forget and output gates,
and c; is the cell.

4. BATCH NORMALIZATION FOR RNNS

From equation 6, an analogous way to apply batch normaliza-
tion to an RNN would be as follows:

ht = ¢(BN(Whht_1 + WIXt)). (17)

However, in our experiments, when batch normalization was
applied in this fashion, the model failed to learn. In un-
normalized RNNs, the tied nature of the recurrent weight
matrix W), makes optimization difficult since small changes

2658



drastically change the solution due to the repeated appli-
cation across time steps. Similarly, when normalizing the
hidden state, the standardization procedure not only affects
the current time step but all future time steps, which, in turn,
are also standardized. Thus, the sequential nature of the hid-
den state makes normalization much more difficult than in
CNNs. So we propose to apply batch normalization only to
the input-to-hidden transition (W ,x;), i.e. as follows:

hy = ¢(Wrh,_; + BN(W,x,)). (18)

This idea is similar to the way dropout [16] can be applied to
RNNSs [17]: batch normalization is applied only on the ver-
tical connections (i.e. from one layer to another) and not on
the horizontal connections (i.e. within the recurrent layer).
We use the same principle for LSTMs: batch normalization
is only applied after multiplication with the input-to-hidden
weight matrices W ..

4.1. Frame-wise and Sequence-wise Normalization

In experiments where we don’t have access to the future
frames, like in language modelling where the goal is to
predict the next character, we are forced to compute the
normalization a each time step

Xkt — Xkt

)
Ot T€

We’ll refer to this as frame-wise normalization.

In applications like speech recognition, we usually have
access to the entire sequences. However, those sequences may
have variable length. Usually, when using mini-batches, the
smaller sequences are padded with zeroes to match the size
of the longest sequence of the mini-batch. In such setups we
can’t use frame-wise normalization, because the number of
unpadded frames decreases along the time axis, leading to in-
creasingly poorer statistics estimates. To solve this problem,
we apply a sequence-wise normalization, where we compute
the mean and variance of each feature along both the time and
batch axis using

19)

Xkt =

m T
1
Xp ==Y Xitk (20)
n =1 t=1
m T
JQZEZZ(X' L —%p)? Q1
k n itk k) >
i=1 t=1

where T’ is the length of each sequence and n is the total num-
ber of unpadded frames in the mini-batch. We’ll refer to this
type of normalization as sequence-wise normalization.

5. EXPERIMENTS

We ran experiments on a speech recognition task and a lan-
guage modelling task. The models were implemented using
Theano [18] and Blocks [19].

7 . ;
N BL train

6K — BLdev
2 I BN train
o 5H j
5|t — BN dev
C
b
04l
<
]
@3
=
[
ol
i

1+

0

0 20 20 60 80 100 120
Every 250 batches

Fig. 1. Frame-wise cross entropy on WSJ for the baseline
(blue) and batch normalized (red) networks. The dotted lines
are the training curves and the solid lines are the validation
curves.

Model Train Valid
FCE FER FCE FER

BiRNN 095 028 111 0.33

BiRNN (BN) 0.73 0.22 1.19 0.34

Table 1. Best framewise cross entropy (FCE) and frame er-
ror rate (FER) on the training and development sets for both
networks.

5.1. Speech Alignment Prediction

For the speech task, we used the Wall Street Journal (WSJ)
[21] speech corpus. We used the si284 split as training set
and evaluated our models on the dev93 development set.
The raw audio was transformed into 40 dimensional log mel
filter-banks (plus energy), with deltas and delta-deltas. As in
[22], the forced alignments were generated from the Kaldi
recipe tri4b, leading to 3546 clustered triphone states. Be-
cause of memory issues, we removed from the training set
the sequences that were longer than 1300 frames (4.6% of the
set), leading to a training set of 35746 sequences.

The baseline model (BL) is a stack of 5 bidirectional
LSTM layers with 250 hidden units each, followed by a size
3546 softmax output layer. All the weights were initialized
using the Glorot [23] scheme and all the biases were set
to zero. For the batch normalized model (BN) we applied
sequence-wise normalization to each LSTM of the baseline
model. Both networks were trained using standard SGD with
momentum, with a fixed learning rate of le-4 and a fixed
momentum factor of 0.9. The mini-batch size is 24.

2659



300 - : :
: Large BL train
250({: Large BL valid |/
Large BN train
200 Large BN valid ||
o A :
2 1501\
2
&

100F -2

50k SOOI Ve

0 10 20 30 20 50 60
Epochs

Fig. 2. Large LSTM on Penn Treebank for the baseline (blue)
and the batch normalized (red) networks. The dotted lines
are the training curves and the solid lines are the validation
curves.

5.2. Language Modeling

We used the Penn Treebank (PTB) [20] corpus for our lan-
guage modeling experiments. We use the standard split (929k
training words, 73k validation words, and 82k test words) and
vocabulary of 10k words. We train a small, medium and large
LSTM as described in [17].

All models consist of two stacked LSTM layers and are
trained with stochastic gradient descent (SGD) with a learning
rate of 1 and a mini-batch size of 32.

The small LSTM has two layers of 200 memory cells,
with parameters being initialized from a uniform distribution
with range [-0.1, 0.1]. We back propagate across 20 time steps
and the gradients are scaled according to the maximum norm
of the gradients whenever the norm is greater than 10. We
train for 15 epochs and halve the learning rate every epoch
after the 6th.

The medium LSTM has a hidden size of 650 for both lay-
ers, with parameters being initialized from a uniform distri-
bution with range [-0.05, 0.05]. We apply dropout with prob-
ability of 50% between all layers. We back propagate across
35 time steps and gradients are scaled according to the maxi-
mum norm of the gradients whenever the norm is greater than
5. We train for 40 epochs and divide the learning rate by 1.2
every epoch after the 6th.

The Large LSTM has two layers of 1500 memory cells,
with parameters being initialized from a uniform distribution
with range [-0.04, 0.04]. We apply dropout between all lay-
ers. We back propagate across 35 time steps and gradients
are scaled according to the maximum norm of the gradients
whenever the norm is greater than 5. We train for 55 epochs
and divide the learning rate by 1.15 every epoch after the 15th.

Model Train Valid
Small LSTM 78.5 119.2
Small LSTM (BN) 62.5 1209
Medium LSTM 49.1 89.0
Medium LSTM (BN)  41.0 90.6
Large LSTM 493 81.8
Large LSTM (BN) 35.0 97.4

Table 2. Best perplexity on training and development sets for
LSTMs on Penn Treebank.

6. RESULTS AND DISCUSSION

Figure 1 shows the training and development framewise cross
entropy curves for both networks of the speech experiments.
As we can see, the batch normalized networks trains faster (at
some points about twice as fast as the baseline), but overfits
more. The best results, reported in table 1, are comparable to
the ones obtained in [22].

Figure 2 shows the training and validation perplexity for
the large LSTM network of the language experiment. We can
also observe that the training is faster when we apply batch
normalization to the network. However, it also overfits more
than the baseline version. The best results are reported in
table 2.

For both experiments we observed a faster training and a
greater overfitting when using our version of batch normal-
ization. This last effect is less prevalent in the speech ex-
periment, perhaps because the training set is way bigger, or
perhaps because the frame-wise normalization is less effec-
tive than the sequence-wise one. It can also be caused by the
experimental setup: in the language modeling task we pre-
dict one character at a time, whereas we predict the whole
sequence in the speech experiment.

Batch normalization also allows for higher learning rates
in feed-forward networks, however since we only applied
batch normalization to parts of the network, higher learning
rates didn’t work well because they affected un-normalized
parts as well.

Our experiments suggest that applying batch normaliza-
tion to the input-to-hidden connections in RNNs can improve
the conditioning of the optimization problem. Future direc-
tions include whitening input-to-hidden connections [10] and
normalizing the hidden state instead of just a portion of the
network.

Acknowledgments

Part of this work was funded by Samsung, NSERC and CI-
FAR. We also thank Nervana Systems for providing GPUs.

2660



(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

[9]

(10]

(11]

7. REFERENCES

Sergey loffe and Christian Szegedy, “Batch nor-
malization: Accelerating deep network training by
reducing internal covariate shift,”  arXiv preprint
arXiv:1502.03167, 2015.

Alan Graves, Abdel-rahman Mohamed, and Geoffrey
Hinton, “Speech recognition with deep recurrent neu-
ral networks,” in Acoustics, Speech and Signal Process-
ing (ICASSP), 2013 IEEE International Conference on.
IEEE, 2013, pp. 6645-6649.

Ilya Sutskever, Oriol Vinyals, and Quoc Le, “Sequence
to sequence learning with neural networks,” in Advances
in Neural Information Processing Systems, 2014, pp.
3104-3112.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio, “Neural machine translation by jointly learning to
align and translate,” arXiv preprint arXiv:1409.0473,
2014.

Tom4s Mikolov, “Statistical language models based on
neural networks,” Presentation at Google, Mountain
View, 2nd April, 2012.

Sepp Hochreiter and Jiirgen Schmidhuber, “Long short-
term memory,” Neural computation, vol. 9, no. 8, pp.
1735-1780, 1997.

Will Williams, Niranjani Prasad, David Mrva, Tom Ash,
and Tony Robinson, ‘“Scaling recurrent neural network
language models,” arXiv preprint arXiv:1502.00512,
2015.

Awni Hannun, Carl Case, Jared Casper, Bryan Catan-
zaro, Greg Diamos, Erich Elsen, Ryan Prenger, San-
jeev Satheesh, Shubho Sengupta, Adam Coates, et al.,
“Deepspeech: Scaling up end-to-end speech recogni-
tion,” arXiv preprint arXiv:1412.5567, 2014.

Yann A LeCun, Léon Bottou, Genevieve B Orr, and
Klaus-Robert Miiller, “Efficient backprop,” in Neural
networks: Tricks of the trade, pp. 9—48. Springer, 2012.

Guillaume Desjardins, Karen Simonyan, Razvan Pas-
canu, and Koray Kavukcuoglu, “Natural neural net-
works,” arXiv preprint arXiv:1507.00210, 2015.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause,
Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej
Karpathy, Aditya Khosla, Michael Bernstein, Alexan-
der C. Berg, and Li Fei-Fei, “ImageNet Large Scale
Visual Recognition Challenge,” International Journal
of Computer Vision (IJCV), pp. 1-42, April 2015.

2661

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

(20]

(21]

(22]

(23]

Mike Schuster and Kuldip K Paliwal, “Bidirectional
recurrent neural networks,” Signal Processing, IEEE
Transactions on, vol. 45, no. 11, pp. 2673-2681, 1997.

Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, and
Yoshua Bengio, “How to construct deep recurrent neural
networks,” arXiv preprint arXiv:1312.6026, 2013.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio,
“On the difficulty of training recurrent neural networks,”
arXiv preprint arXiv:1211.5063, 2012.

Felix A Gers, Nicol N Schraudolph, and Jiirgen Schmid-
huber, “Learning precise timing with Istm recurrent net-
works,” The Journal of Machine Learning Research,
vol. 3, pp. 115-143, 2003.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov, “Dropout:
A simple way to prevent neural networks from overfit-
ting,” The Journal of Machine Learning Research, vol.
15, no. 1, pp. 1929-1958, 2014.

Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals,
“Recurrent neural network regularization,” arXiv
preprint arXiv:1409.2329, 2014.

Frédéric Bastien, Pascal Lamblin, Razvan Pascanu,
James Bergstra, Ian J. Goodfellow, Arnaud Bergeron,
Nicolas Bouchard, and Yoshua Bengio, “Theano: new
features and speed improvements,” Deep Learning and
Unsupervised Feature Learning NIPS 2012 Workshop,
2012.

B. van Merriénboer, D. Bahdanau, V. Dumoulin,
D. Serdyuk, D. Warde-Farley, J. Chorowski, and Y. Ben-
gio, “Blocks and Fuel: Frameworks for deep learning,”
ArXiv e-prints, June 2015.

Mitchell P Marcus, Mary Ann Marcinkiewicz, and Beat-
rice Santorini, “Building a large annotated corpus of en-
glish: The penn treebank,” Computational linguistics,
vol. 19, no. 2, pp. 313-330, 1993.

Douglas B Paul and Janet M Baker, “The design for the
wall street journal-based csr corpus,” in Proceedings of
the workshop on Speech and Natural Language. Associ-
ation for Computational Linguistics, 1992, pp. 357-362.

Alan Graves, Navdeep Jaitly, and Abdel-rahman Mo-
hamed, “Hybrid speech recognition with deep bidirec-
tional Istm,” in Automatic Speech Recognition and Un-
derstanding (ASRU), 2013 IEEE Workshop on. 1EEE,
2013, pp. 273-278.

Xavier Glorot and Yoshua Bengio, “Understanding the
difficulty of training deep feedforward neural networks,”
in International conference on artificial intelligence and
statistics, 2010, pp. 249-256.



