
STABLE AND SYMMETRIC FILTER CONVOLUTIONAL NEURAL NETWORK

Raymond Yeh, Mark Hasegawa-Johnson, Minh N. Do

University of Illinois at Urbana Champaign, Champaign, IL, USA
Department of Electrical and Computer Engineering
{yeh17, jhasegaw, minhdo}@illinois.edu

ABSTRACT

First we present a proof that convolutional neural networks
(CNN) with max-norm regularization, max-pooling, and Relu
non-linearity are stable to additive noise. Second, we explore
the use of symmetric and antisymmetric filters in a baseline
CNN model on digit classification, which enjoys the stabil-
ity to additive noise. Experimental results indicate that the
symmetric CNN outperforms the baseline model for nearly
all training sizes and matches the state-of-the-art deep-net in
the cases of limited training examples.

Index Terms— Convolutional Neural Network, Symmet-
ric, Deep Learning

1. INTRODUCTION

Deep convolutional neural networks have demonstrated im-
pressive performance on image classification [1]. There are
many studies attempting to understand the effectiveness of
these networks both empirically by visualizing the activa-
tions, and theoretically through analyzing the network prop-
erties [2, 3, 4]. In particular, Bruna and Mallat have demon-
strated the effectiveness of translation invariance and stability
to additive noise on a scattering net, a specified type of con-
volutional network [5, 6]. In this paper, we use the framework
proposed by Mallat to prove that CNNs with max-norm reg-
ularization, max-pooling, and Relu non-linearity operations
are stable to additive noise. The effectiveness of max-norm
regularization has been shown in context of collaborative
filtering [7] and deep learning [8]. This proof provides an
explanation for the max-norm regularization, max-pooling,
Relu non-linearity, and convolutional neural networks are a
reasonable inductive bias for image classification.

Scattering net with hand-crafted wavelets as the weights
for its network, which is highly structured, has achieved state-
of-the-art results on digit classification [5]. This suggests that
a fully trainable CNN might have an over complex hypothe-
sis space for this task. As a compromise between fully trained
and fully untrained filters, we propose to restrict the hypoth-
esis space to CNNs with only symmetric or antisymmetric
weights architecture. With this setup, we have half the num-
ber of weights to train in the convolution layer, ensure lin-

ear phase filter response, and gain the potential to accelerate
the training and decoding process as the convolution operator
with symmetric filters could be computed more efficiently.

2. CNN’S STABILITY TO ADDITIVE NOISE

For a transformation, Φ, to be stable to additive noise x′(u) =
x(u) + ε(u), it needs a Lipschitz continuity condition as de-
fined in [5],

‖Φx− Φx′‖2 ≤ C · ‖x− x
′‖2 (1)

for a constant C > 0, and for all x and x′. Φx denotes the
transformed feature.

Next, a standard CNN has the following forward op-
erations, 1) convolution with max-norm regularization, 2)
element-wise Relu non-linearity, and 3) max-pooling. We
will prove that the sequence of these operations can satisfy
the Lipschitz continuity condition.

2.1. Stability of convolution with max-norm regulariza-
tion

Denote the output of a convolution as w ? x. With l1 max-
norm regularization, the weights are renormalized to constant
norm, κ. This means ‖w‖1 ≤ κ. By Young’s inequality for
convolutions [9],

‖w ? x‖2 ≤ ‖w‖1 · ‖x‖2 ≤ κ · ‖x‖2 (2)

Then by linearity of convolution

‖w ? x− w ? x′‖2 ≤ κ · ‖x− x
′‖2 (3)

If x is multi-channel, the convolutional layer sums the
convolution outputs of each channel. Then, by triangle in-
equality, Lipschitz continuity condition holds with C = κ·
(number of channels).

2.2. Stability of Relu operation

Relu is an element-wise operation defined as

Relu(xi) = max(0, xi) (4)

2652978-1-4799-9988-0/16/$31.00 ©2016 IEEE ICASSP 2016

where xi denotes an element in the input signal x. Next, it
can be verified that |Relu(xi) − Relu(x′i)| ≤ |xi − x′i|, by
considering the four cases with xi and x′i each positive or
negative. Therefore, ‖Relu(x)−Relu(x′)‖2 ≤ ‖x− x′‖2.

2.3. Stability of max-pooling

Max-pooling operation divides the input signal into a set of
overlapping or non-overlapping windows, and for each win-
dow outputs the maximum value.

First consider the windows to be non-overlapping, then
we only need to show that the max operation for each win-
dow, following a Relu operation, is Lipschitz continuous. Re-
call that, max-pooling operation follows the Relu operation,
and therefore x > 0 and x′ > 0, where x and x′ denote
the signals in each window. Denote i∗ = arg max

i
xi and

j∗ = arg max
j
x′j . We claim that

|max
i
xi −max

j
x′j | ≤ max(|xi∗ − x′i∗ |, |xj∗ − x′j∗ |) (5)

Then,

|max
i
xi −max

j
x′j | ≤ max

i
|xi − x′i|

= ‖x− x′‖∞ ≤ ‖x− x
′‖2

(6)

If the inequality is true, then the max-pooling operator sat-
isfies Lipschitz continuous condition. The inequality can be
proved by considering the following two cases.

1. xi∗ > x′j∗ → |max
i
xi − max

j
x′j | = xi∗ − x′j∗ ≤

xi∗ − x′i∗
As x and x′ are all greater than 0 and x′j∗ is the largest
in x′.

2. x′j∗ > xi∗ → |max
i
xi − max

j
x′j | = x′j∗ − xi∗ ≤

x′j∗ − xj∗

Therefore, max-pooling operation with non-overlapping
windows satisfies the Lipschitz continuity condition with
C = 1

Next, consider overlapping windows, with k overlaps;
where k is less than the window size. As each of the overlap-
ping term’s contribution to the norm is less than or equal to
‖x− x′‖2, we can show that

‖maxPoolk(x)−maxPoolk(x′)‖2 ≤ (k + 1) · ‖x− x′‖2
(7)

, where k is the number of overlapping elements in the pool-
ing window.

3. SYMMETRIC FILTER CNNS

The symmetric filter CNN is motivated by recent results
showing that a Scattering Net, with weights set equal to

wavelet coefficients and untrained, was able to reach state
of the art performance in handwritten digit recognition [5].
As wavelets have symmetric or antisymmetric structure, we
speculate that the hypothesis space of the CNN model can be
restricted to only symmetric and antisymmetric convolution
layers. Let W denote a weight(filter) coefficients centered at
(0, 0). By antisymmetric we mean W (i, j) = −W (−i,−j)
and by symmetric we mean W (i, j) = W (−i,−j).

Symmetric and antisymmetric filters with odd height and
width have generalized linear phase. This ensures that no
phase distortion occurs at the convolutional layer, hence the
structure of the signal is maintained; this is a very common
practice in filter design [10]. Furthermore, when enforcing
this symmetric constraint, the number of parameters to train
is reduced and the potential to accelerate training and decod-
ing by using a symmetric convolution operator is gained, as
convolution on symmetric filters requires half as many multi-
plications as convolution with arbitrary filters.

3.1. Symmetry in image recognition tasks

At first glance a constraint of symmetric and antisymmetric
filters with respect to the origin seems like a very strong con-
dition. However, the overall model can represent approxi-
mately the same set of functions as a model that has symmet-
ric or antisymmetric weights with respect to a certain point,
not necessarily the origin; many of the learned CNN filters
published as examples in image recognition papers have ap-
proximately this property, as do the many of the filters learned
in our own baseline experiments. The reasoning is as follows,
denote the translation operator T~c, such that T~c(W (~x)) =
W (~x − ~c). Then, for a filter symmetric to some point ~c, we
can translate the filter to be centered at the origin. From the
translation invariance property of convolution, T~c(W) ? g =
T~c(W ?x), i.e., the output from the convolution layer is trans-
lated. Therefore, we see that centering the filter will result in
a translated output and no loss of information.

Relu is an element-wise operator, and thus the output con-
tinues to be a translated version. For max-pooling of window
size N × N , if ~c happens to be a multiple of N , then the
output from the centered model will again be the translated
version of the non-centered model. On the other hand, ~c is
less than N , then as long as the max element does not move
out of the max-pooling window, the output will be equivalent;
hence the output is approximately the same as the one from
the non-centered model. Lastly, the fully connected layers
are not affected by reordering of the inputs, as reordering the
weights in the same manner will give equivalent output.

3.2. Model architecture

The model architecture we used is shown in Fig. 1. In or-
der to have a direct observation on the effect of the proposed
symmetric filter CNN model, we have chosen a simple net-
work architecture modified from LeNet [11], using Relu as

2653

Fig. 1: CNN architecture used in experiments

the non-linearity operation, and max-pooling with 2x2 non-
overlapping windows. We used this model as the baseline
benchmark. Experiment results for the comparison are shown
in Table 1.

The symmetric filter CNN model follows the same archi-
tecture as the baseline described, except for the change that at
each convolutional layer, half of the filters are enforced to be
symmetric and the others to be antisymmetric.

The model weights were randomly initialized. No pre-
training or dropout were used.

4. EXPERIMENTS

4.1. MNIST dataset

The MNIST database of hand-written digits contains 60,000
training samples and 10,000 test samples [12]. We evaluated
on different training sizes and report the results in Table 1. For
each training size, we randomly sampled from the training set
with a constraint that each digit occurs with the same number
of times [5], which is to avoid very skewed distribution pos-
sibly resulting from random sampling. Also, no distortion of
any kind was used to enhance the training data; preprocessing
done to the data was normalization.

4.2. Learning procedure

We trained our networks using stochastic gradient descent
with momentum. We used 10,000 random examples from the

training data as a holdout set for tuning hyperparameters; this
includes learning rate, regularization parameters (max-norm
and l2 regularization), momentum and batch size. The tun-
ing procedure follows the suggested techniques mentioned in
[13]. The identical tuning procedure is performed on the base-
line model and the symmetric model, to control for the effect
of tuning on the performance of the models.

4.2.1. Gradient for symmetric convolutional layer

In this section, we derive the gradient formula for the sym-
metric/antisymmetric convolutional layer, using back propa-
gation notation of [14]. First denote the following terms,

1. a(l)j = jth channel of the activation map at lth layer.

2. W (l)
ij = ith channel of the jth filter at lth layer.

3. f(·) = an element-wise non-linear operator.

4. ? = convolution.

5. J = overall loss function

6. δ(l)j (u, v) = ∂J

∂z
(l)
j (u,v)

= backprop error.

The forward convolutional operation without symmetric con-
straint can be defined as

z
(l)
j = (

∑
i

a
(l−1)
i ? W

(l−1)
ij) (8)

a
(l)
j = f(z

(l)
j) (9)

Then the gradient of J with respect to the filter weight is

∂J

∂W
(l−1)
ij (u, v)

=
∑
u′

∑
v′

∂J

∂z
(l)
j (u′, v′)

·
∂z

(l)
j (u′, v′)

∂W
(l−1)
ij (u, v)

(10)
From equation 9, we can see that

∂z
(l)
j (u′, v′)

∂W
(l−1)
ij (u, v)

= a
(l−1)
i (u′ − u, v′ − v) (11)

as the gradient is non-zero when û = u, and v̂ = v.
Lastly, for the simplicity of indexing, let W̃ l−1

ij (u, v) be
the weights of the symmetric convolution layer, constrained
so W̃ (l−1)

ij (−u,−v) = W̃
(l−1)
ij (u, v).

The gradient with respect to the symmetric filter weight
can be written in terms of the gradient of the general convo-
lution layer as follows,

∂J

∂W̃
(l−1)
ij (u, v)

=
∑
u′

∑
v′

∂J

∂z
(l)
j (u′, v′)

·
∂z

(l)
j (u′, v′)

∂W
(l−1)
ij (u, v)

+

∑
u′

∑
v′

∂J

∂z
(l)
j (u′, v′)

·
∂z

(l)
j (u′, v′)

∂W
(l−1)
ij (−u,−v)

(12)

2654

Training Sym-Conv. Base-line. State-of-art
Size Net Conv. Net Conv. Net
300 9.95 10.30 10.63

1,000 4.31 4.40 4.48
2,000 3.25 3.20 3.05
5,000 2.15 2.21 1.98
10,000 1.45 1.30 0.84
20,000 1.01 1.06 0.70
40,000 0.82 0.85 0.64
60,000 0.70 0.74 0.62

Table 1: Percentage of Errors on MNIST Test Set vs. Train-
ing Size

The gradient for the antisymmetric convolution layer can be
derived similarly.

4.3. Results and Discussions

Table 1 reports the results from the symmetric convolutional
network, the baseline network without symmetric filters, and
the state-of-the-art convolutional network model (5-layers)
with no pre-training, no image distortion, and no other im-
provement techniques [15], which is a reasonable comparison
to our model.

The symmetric convolutional network outperforms the
baseline model for nearly all training sizes; the difference in
error rates between the symmetric and the baseline models
decreases as training set size increases.

For small training size (e.g. 300 and 1,000), both the
symmetric and baseline models outperform the state-of-the-
art deep-net, when randomly initialized supervised in [15].
These results support the intuition that more complex mod-
els are more prone to overfitting, and simpler models perform
better with limited training data.

Next, Fig. 2 presents the weights visualization of the first
convolutional layer from the trained symmetric CNN on size
20,000, where the first four rows are for symmetric filters,
and the bottom four rows are for antisymmetric ones. These
weights are matched with our signal processing intuition. De-
note (i, j) as the ith row jth column in Fig. 2. Consider
(3, 4), the middle 3 × 3 pixels resembles exactly a high pass
filter. Overall, the weights are very interpretable, i.e. they are
all roughly edge detections in a particular direction, which is
very reasonable as the edges of a digit are likely the most dis-
criminant classification features. Furthermore, we compared
the weights learned from the symmetric CNN and baseline
CNN, we observed that some of the weights, Fig. 3, are iden-
tical, but symmetric CNN has the weights centered at the ori-
gin, (e.g (5, 1), (5, 2)), as suggested by the analysis in Section
3.1.

Lastly, we have also examined models with only symmet-
rical filters and with only antisymmetric filters. Overall, the
convolutional network with half antisymmetric filters and half

Fig. 2: First convolutional layer weights visualization from
symmetric CNN

Fig. 3: Selected first convolutional layer weights visualization
from baseline CNN

symmetric filters outperforms the models with only antisym-
metric filters or with only symmetric filters. Furthermore, the
network with only antisymmetric filters outperforms the one
with only symmetric filters. These findings lead to the con-
clusion that antisymmetric filters are important for correctly
identifying the digits, but antisymmetric filters are not suf-
ficient without the complementary information provided by
symmetric filters.

5. CONCLUSIONS

We present a proof that CNNs with max-norm regulariza-
tion, Relu non-linearity, and max-pooling are stable to addi-
tive noise. We investigate the use of symmetric and antisym-
metric filters in CNN model on the MNIST dataset. State-of-
the-art results were achieved for handwritten digit classifica-
tion in the cases of very small training sizes. We also show
that the network with symmetric and antisymmetric filters is
generally better than the baseline benchmark model. Lastly,
we analyzed the model weights and verified our understand-
ing that the set of functions that the symmetric models have
learned are empirically similar to those of the baseline model.

2655

6. REFERENCES

[1] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hin-
ton, “Imagenet classification with deep convolutional
neural networks,” in Advances in neural information
processing systems, 2012, pp. 1097–1105.

[2] Matthew D Zeiler and Rob Fergus, “Visualizing and
understanding convolutional networks,” in Computer
Vision–ECCV 2014, pp. 818–833. Springer, 2014.

[3] Ian Goodfellow, Honglak Lee, Quoc V Le, Andrew
Saxe, and Andrew Y Ng, “Measuring invariances in
deep networks,” in Advances in neural information pro-
cessing systems, 2009, pp. 646–654.

[4] Ian J Goodfellow and Oriol Vinyals, “Qualitatively
characterizing neural network optimization problems,”
arXiv preprint arXiv:1412.6544, 2014.

[5] Joan Bruna and Stéphane Mallat, “Invariant scattering
convolution networks,” Pattern Analysis and Machine
Intelligence, IEEE Transactions on, vol. 35, no. 8, pp.
1872–1886, 2013.

[6] Stéphane Mallat, “Group invariant scattering,” Commu-
nications on Pure and Applied Mathematics, vol. 65, no.
10, pp. 1331–1398, 2012.

[7] Nathan Srebro and Adi Shraibman, “Rank, trace-norm
and max-norm,” in Learning Theory, pp. 545–560.
Springer, 2005.

[8] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov, “Dropout:
A simple way to prevent neural networks from overfit-
ting,” The Journal of Machine Learning Research, vol.
15, no. 1, pp. 1929–1958, 2014.

[9] William Beckner, “Inequalities in Fourier analysis,” An-
nals of Mathematics, pp. 159–182, 1975.

[10] Jelena Kovacevic, Vivek Goyal, and Martin Vetterli, ,”
in Fourier and Wavelet Signal Processing. Cambridge
University Press, 2014.

[11] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick
Haffner, “Gradient-based learning applied to document
recognition,” Proceedings of the IEEE, vol. 86, no. 11,
pp. 2278–2324, 1998.

[12] Yann LeCun, Corinna Cortes, and Christopher JC
Burges, “The MNIST database of handwritten digits,”
1998.

[13] Yoshua Bengio, “Practical recommendations for gradi-
ent - based training of deep architectures,” in Neural
Networks: Tricks of the Trade, pp. 437–478. Springer,
2012.

[14] Christopher M. Bishop, Neural Networks for Pattern
Recognition, Oxford University Press, Inc., New York,
NY, USA, 1995.

[15] Marc Aurelio Ranzato, Fu Jie Huang, Y-Lan Boureau,
and Yann LeCun, “Unsupervised learning of invariant
feature hierarchies with applications to object recogni-
tion,” pp. 1–8, 2007.

2656

