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ABSTRACT
The large number of parameters in deep neural networks
(DNNs) often makes them prohibitive for low-power de-
vices, such as field-programmable gate arrays (FPGA). In
this paper, we propose a method to determine the relative im-
portance of all network parameters by measuring the amount
of information that the network output carries about each of
the parameters - the Fisher Information. Based on the impor-
tance ranking, we design a complexity reduction scheme that
discards unimportant parameters and assigns more quantiza-
tion bits to more important parameters. For evaluation, we
construct a deep autoencoder and learn a non-linear dimen-
sionality reduction scheme for accelerometer data measuring
the gait of individuals with Parkinson’s disease. Experimen-
tal results confirm that the proposed ranking method can help
reduce the complexity of the network with minimal impact
on performance.

Index Terms— deep neural networks, Fisher Informa-
tion, pruning, quantization, complexity reduction, FPGA

1. INTRODUCTION

The expressive power of deep neural networks (DNNs) comes
from their application of large numbers of parameters to trans-
form data. Yet the number of these parameters can make
DNNs prohibitive for low-power applications. Each weight
parameter contributes (approximately) a multiply and an ad-
d to forward-pass calculations, and each must be stored in
memory. A number of studies have focused on reducing the
parametric complexity of DNNs through pruning, regulariza-
tion, smart quantization, etc. [1, 2]. In this paper we de-
velop a method to determine the relative importance of all
network parameters by measuring the amount of information
that the network output carries about each of the parameters
- the Fisher Information. This ranking can then be used to
remove unimportant parameters in the network or to devise
quantization strategies that assign more bits to more relevant
parameters.

This research was supported in part by the Office of Naval Research
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A straightforward approach to reducing neural network
complexity and memory demands is pruning: the removal of
unimportant parameters in the network. A number of stud-
ies have approached this topic. In [3], the authors propose
to trim neural networks by iteratively turning on and off hid-
den units and evaluating the change in network performance.
Another approach is to remove weights with small magnitude
[4]. In [5] and [6], the authors use the second order deriva-
tive of the objective function w.r.t. a parameter perturbation
to determine irrelevant weights. These two methods involve
calculating the diagonal Hessian matrix or its inverse. Per-
haps most similar to our work is the natural pruning method
in [7, 8]. Both methods use the Fisher Information as a means
of characterizing the importance of network parameters; how-
ever, [7] and [8], make the limiting assumption that the output
network distribution is conditionally Gaussian. Our method
makes no such parametric assumptions.

For reducing memory demands, there are a number of s-
tudies on DNNs parameter quantization in the literature. The
studies in [9, 10, 11] discretize the weights of a neural net-
work according to the weights’ ranges. The methods in [12]
and [13] use uniform scalar parameter quantization to imple-
ment fixed-point versions of the networks. In [14], a new
fixed-point implementation of the DNNs is proposed, with the
parameters set during DNN training. Other methods use vec-
tor quantization to compress the DNNs [2, 15] .

In contrast to previous work, here we consider a more gen-
eral problem than that of pruning or quantization: our aim is
to develop a method to rank the parameters by their relative
importance, in a way which doesn’t make assumptions about
the neural network output’s distributional statistics. We can
then use this ranking to reduce network complexity for arbi-
trary problems. We exploit the relationship between the fam-
ily of f -divergences and the Fisher Information, along with
a recently-proposed non-parametric f -divergence, to design
the ranking algorithm [16]. We quantify the information in
each parameter based on the perturbation strategy originally
proposed to estimate the Fisher information [16]; we evaluate
the approach on a dimensionality reduction task using a deep
autoencoder for pruning and quantization applications.
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2. THE FISHER INFORMATION AND DEEP
NEURAL NETWORKS

Let us consider the notional DNN in Fig. 1 with input y ∈
RL, parameters θ ∈ Rd, and output x ∈ RK . The output
distribution of the network depends on the input distribution
(assumed to be unknown) and on the parameters θ. We mod-
el the output distribution of the network by p(x;θ) with do-
main RK and parameterized by a multidimensional parameter
θ with domain Rd. In the notional network in Fig. 1, L = 4,
K = 2, and d = 26.

We consider a family of probability distribution function-
s, each corresponding to a different realization of the deep
network, D = {p(x;θ)}, where x is the random variable
corresponding to the output of the deep network and θ rep-
resents the weight matrices associated with the network. The
d×d symmetric positive semidefinite Fisher Information ma-
trix, F = (Fij), evaluated at a particular value of θ, is given
by

Fij(θ) = E

[
∂ log p(x;θ)

∂θi

∂ log p(x;θ)

∂θj

]
. (1)

The Fisher Information Matrix (FIM) provides an esti-
mate of how much information a random variable carries
about a parameter of the distribution. In the context of a
DNN, this provides a natural metric for quantifying the rela-
tive importance of any given parameter in the network. The
less information an output variable carries about a parameter,
the less important that parameter is to the output statistics of
the network. As a result, we assume that removing parameter-
s with low entries in the FIM diagonal will not greatly affect
the output of the network. Traditionally, estimating the FIM
in this context requires complete knowledge of the underlying
distribution, p(x), and its exact dependence on the parame-
ter θ. In the ensuing section, we describe a non-parametric
method for estimating the FIM for these networks.

3. RANKING THE NETWORK PARAMETERS

We assume that we start with a fully trained DNN. Let us con-
sider the case where the weights of this network are slightly
perturbed about the optimal value of θ:

q = p(x;θ + u), (2)

where θ + u is a small perturbation around θ. Amari and
Cichocki showed that any f -divergence induces a unique in-
formation monotonic Riemannian metric, given by the FIM
(Thm. 5 in [17]). Using the Taylor expansion they show that
any f -divergence, Df (p, q), is related to the FIM through the
asymptotic relation

Df (p, q) =
1

2
uTF(θ)u+ o(||u||2). (3)

Divergences in the family of f -divergences, or Ali-Silvey
distances, are defined as an average of the ratio of two dis-
tributions, weighted by some function f(t): Df (p, q) =

y  

y1  

y2  

y3  

y4  

x1  

x2  
x ~ p (x; θ)  

θ12! θ23! θ34!

Fig. 1. A notional deep network architecture with input y,
output x, and weights θ.

∫
f(p(x)q(x) )q(x)dx [18]. Many common divergences used in

statistical signal processing fall in this category, including
the KL-divergence, the Hellinger distance, the total variation
distance, etc. [18].

More recently, Berisha et al. have introduced the Dα-
divergence between distributions [19, 16], defined as

Dα(p, q) =
1

4α(1−α)

[∫
(αp(x)−(1−α)q(x))2
αp(x)+(1−α)q(x) dx− (2α− 1)2

]
. (4)

This divergence has the remarkable property that it can be
estimated directly without estimation or plug-in of the den-
sities p and q based on an extension of the Friedman-Rafsky
(FR) multi-variate two sample test statistic [20]. Let us con-
sider Np samples from p and Nq samples from q, denoted
by Xp ∈ RNp×K and Xq ∈ RNq×K . The FR test statis-
tic, C(Xp,Xq), is constructed by first generating a Euclidean
minimal spanning tree (MST) on the concatenated data set,
Xp ∪Xq , and then counting the number of edges connecting
a data point from p to a data point from q. In [19], the au-
thors define an asymptotically consistent estimator for (4) in
terms of the FR test statistic. In other words, the quantity in
(4) can be estimated directly from the data sampled from p
and q without parametric assumptions on these distributions.

By combining the FIM relationship in (3) with the diver-
gence measure in (4), the authors in [16] outline a method
for non-parametrically estimating the FIM. Through multiple
perturbations of the parameters of the network, θ, based on
(3), we can construct a system of equations where the only
unknown parameters are the entries of the FIM. As a result,
we can construct a semidefinite program whose solution re-
constructs the FIM (see sections 2 and 3 in [16] for exact de-
tails).

The size of the FIM is d× d; estimating such a large ma-
trix can be prohibitive for networks with large numbers of
parameters. In Algorithm 1, we propose an alternate means
of reconstructing just the diagonal entries of the FIM by iter-
atively perturbing each parameter in the network and generat-
ing a new data set from the network output for each perturba-
tion. By calculating the Dα-divergence between the original
network output and the network output for the perturbed net-
work, we can iteratively estimate the diagonal components of
the FIM matrix one at a time. If we use a random perturba-
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Algorithm 1 DNN parameter ranking algorithm based on the
Fisher Information

Input: A trained DNN with parameters θ, input data X,
and input-output function Y = f(X;θ)
Output: The indices of parameters of the network, ranked
by their contribution to the FIM, θIDX

Define: d = ∅
Y = f(X;θ)
d = #parameters

for i ∈ 1 . . . d do
θ̃ = θ
ui = SmallRandomPertubation();
θ̃(i) = θ̃(i) + ui
Yi = f(X; θ̃)
d(i) = Dα(Y,Yi)

end for
θIDX = SortIdx(d)

tion, we can use Monte Carlo methods to generate multiple
estimates of Dα and average to estimate the FIM diagonal
components. Since the perturbation is small, the divergence
dominates the parameter importance. Thus, we do not divide
the divergence by the perturbation in Algorithm 1, keeping
parameter importance in a reasonable range.

4. EXPERIMENT AND RESULTS

We consider a non-linear dimensionality reduction task us-
ing deep autoencoder for evaluation of the method. The data
used in the experiment is from accelerometer data measur-
ing the gait of patients with Parkinson’s disease. The bot-
tom of each patient’s foot is fitted with 9 pressure sensors that
measure impact force (in Newtons) over time with a sampling
rate of 100 samples/second. This results in a 18-dimensional
time-varying signal. We use a 3-layer autoencoder to reduce
the dimension of the data from 18 dimensions to 2, using the
nonlinear PCA toolbox for Matlab [21]. The network has one
hidden layer with 6 nodes and an output layer has 2 nodes.
The total number of parameters including bias terms is 128.
Conjugate gradient descent is used to train the autoencoder
on 25 seconds of data. An additional 12.5 seconds of data is
used to learn the ranking of the parameters using Algorithm
1. Here, the importance of each parameter is the average of
10 perturbations. We use this ranking to remove unimportant
parameters by setting their value to 0 and quantize the remain-
ing parameters by assigning the number of bits based on their
relative importance. A held-out test set is used to evaluate the
performance of the pruning and quantization methods.

We compare the proposed ranking algorithm against
methods used in the literature, namely magnitude-based prun-
ing [4] and the Fisher Information-based pruning assuming
a parametric data model [7] [8]. The latter method is very
similar to Algorithm 1, except for two important differences:
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Fig. 2. Reconstruction error change with increasing number
of removed parameters. There are a total of 128 parameters
in the network.
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Fig. 3. Original network output compared to output after
pruning. In all three plots, blue points represent network out-
puts without parameter pruning. The other colors represent
the outputs of the pruned network using three different prun-
ing methods. The closer the two sets of points, the better the
representation.

it uses Kullback-Leibler (KL) divergence between the origi-
nal and the perturbed model; and it assumes the output data
is Gaussian distributed in order to be able to estimate this
divergence measure. After we obtain the importance index of
each parameter (including bias terms), we conduct two sets
of experiments to evaluate our algorithm. First, we prune the
neural network by removing a varying number of unimportant
parameters. Second, we consider a fixed-point implementa-
tion of the neural network and quantize the parameters using a
quantization scheme that assigns more bits to more important
parameters.

4.1. Complexity reduction through parameter pruning

Given the parameter ranking from all three methods, we prune
the neural network by directly removing the least important
parameters (as determined by each model). Different num-
bers of parameters from 10 to 50 with step 10 are removed to
test the impact of parameter pruning on neural network per-
formance. To show how parameter pruning will impact the
reconstruction error, we then reconstruct the input using the
intact decoder trained beforehand. Fig. 2 shows the result of
the reconstruction error of different methods by removing dif-
ferent numbers of parameters. We see that by deleting a small
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Fig. 4. The blue line is the scaled Fisher information associat-
ed with the unpruned network parameters sorted in ascending
order. The red step function shows the results of k-means
clustering. The parameters falling in each cluster are repre-
sented using a different number of bits.

number of unimportant parameters magnitude-based pruning
is the best. However, when more than 30 parameters are re-
moved, divergence-based pruning surpasses magnitude-based
pruning and reconstruction error of Dα-divergence is much
lower than the method based on the KL divergence.

The FIM estimator depends on the ability to correctly es-
timate the Dα-divergence. As was discussed in [16], this is
more challenging for small values of Dα. When the error in
this estimation dominates the ranking of weights, the exact
weight selected by Dα is almost random (all weights whose
Fisher Information is less than the error threshold are about
equally likely). In contrast, weights very near zero are so low
that they rarely affect neuron firing. So the magnitude-based
pruning makes good decisions early on by removing almost-
zero weights, while the Dα method makes near random picks
from among the low-Fisher-Information weights because the
error in estimation dominates the answer. As the figure shows,
this changes dramatically once the magnitude of Dα exceeds
the estimation error.

The scatter plots of the 2 dimensional outputs of the o-
riginal autoencoder and the pruned autoencoder (50 param-
eters removed) are shown in Fig. 3. It is easy to see that
magnitude-based pruning brings largest deviation from the o-
riginal output, while KL divergence-based pruning is better
and Dα-divergence-based pruning is the best.

4.2. Complexity reduction through parameter quantiza-
tion

In order to assess various methods for reducing the network’s
stored size, we evaluate both pruning and quantization in
combination. When we apply a pruning method, we prune
the least important 50 weights from the neural network using
one of the methods from section 4. The pruning methods
considered are: [none, Dα-ranked, KL-ranked, and Mag-
ranked]. We also consider two quantization methods. First is
a uniform 19-bit quantization for all parameters. Our second
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Fig. 5. Average bit rate and reconstruction error for the dif-
ferent methods. The methods that use pruning assume 0 bit-
s/sample for the removed samples.

quantization method is a varying bit-rate quantization method
based on k-means clustering. We rank-order the weights by
an importance metric (Dα, KL, or Mag) and cluster them into
7 clusters. The clusters are then quantized using varying bit
depths, from 16 bits (least important) through 22 bits (most
important). Fig. 4 shows an overlay of bit-depth clusters ver-
sus parameter ranking as determined by the Dα-divergence.

We compare the reduction methods based on two criteria
in Fig. 5: the reconstruction error and the number of bits
per parameter (BPP) required to achieve this reconstruction
error. The results of varying bit-rate quantization are averages
of 10 trials. We notice some general trends from this plot:
(1) no pruning and uniform quantization produces the lowest
error but requires by far the most BPP; (2) relevance-based
quantization results in slightly lower BPP than methods with
uniform quantization, while pruning dramatically reduces the
required BPP; and (3) the networks resulting from pruning
and quantization based on the Dα divergence outperform the
networks reduced using other methods.

5. CONCLUSION

In this paper we proposed a new Fisher Information criterion
based method to rank the set of parameters in a DNN. We used
recent results from the authors on non-parametric estimates of
the Fisher Information to construct an algorithm that can iter-
atively estimate the Fisher Information in a DNN through per-
turbation analysis. We used this method to reduce the com-
plexity of a trained deep autoencoder by removing redundant
parameters and by quantizing the remaining parameters based
on their relative importance. Moving forward, our aim is to
build the pruning and quantization methods into the training
procedure by developing new regularization algorithms that
make the networks insensitive to parameter perturbation.
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