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ABSTRACT
A framework is introduced for solving a sequence of slowly
changing optimization problems, including those arising in
regression and classification applications, using optimiza-
tion algorithms such as stochastic gradient descent (SGD).
The optimization problems change slowly in the sense that
the minimizers change at either a fixed or bounded rate. A
method based on estimates of the change in the minimizers
and properties of the optimization algorithm is introduced
for adaptively selecting the number of samples needed from
the distributions underlying each problem in order to ensure
that the excess risk, i.e., the expected gap between the loss
achieved by the approximate minimizer produced by the opti-
mization algorithm and the exact minimizer, does not exceed
a target level. Experiments with synthetic and real data are
used to confirm that this approach performs well.

Index Terms— stochastic optimization, gradient meth-
ods, machine learning, adaptive algorithms

1. INTRODUCTION

Consider solving a sequence of machine learning problems
such as regression or classification by minimizing the ex-
pected value of a fixed loss function `(x,z) at each time
n:

min
x∈X

{
fn(x), Ezn∼pn [`(x,zn)]

}
∀n≥ 1 (1)

For regression, zn corresponds to the predictors and response
at time n and x parameterizes the regression model. For clas-
sification, zn corresponds to the features and label at time n
and x parameterizes the classifier. Although, motivated by
regression and classification, our framework works for any
loss function `(x,z) that satisfies certain properties discussed
later. In the learning context, a task consists of the loss func-
tion `(x,z) and the distribution pn, and so our problem can
be viewed as learning a sequence of tasks.

The problems change slowly at a constant but unknown
rate in the sense that

‖x∗n−x∗n−1‖= ρ ∀n≥ 2 (2)

with x∗n the minimizer of fn(x). In an extended version of
this paper [1], we also consider slow changes at a bounded
but unknown rate

‖x∗n−x∗n−1‖ ≤ ρ ∀n≥ 2 (3)
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Under this model, we sequentially find approximate
minimizers xn of each function fn(x) using Kn samples

{zn(k)}Kn
k=1

iid∼ pn from pn by applying an optimization algo-
rithm such as SGD starting from the previous approximate
minimizer xn−1. We evaluate the quality of our approximate
minimizers xn through an excess risk criterion εn, i.e.,

E [ fn(xn)]− fn(x
∗
n)≤ εn

which is a standard criterion for optimization and learning
problems [2]. Our goal is to determine adaptively the num-
ber of samples Kn required to achieve a desired excess risk
ε for each n with ρ unknown. As ρ is unknown, we con-
struct estimates of ρ , which, combined with properties of the
chosen optimization algorithm, yield selection rules for the
number of samples Kn required to achieve a target excess risk
ε . Finally, we test our approach on synthetic and real data.

1.1. Related Work

Our problem has connections with multi-task learning (MTL)
and transfer learning. In multi-task learning, one tries to learn
several tasks simultaneously as in [3], [4], and [5] by exploit-
ing the relationships between the tasks. In transfer learning,
knowledge from one source task is transferred to another tar-
get task either with or without additional training data for the
target task [6], [7]. Multi-task learning could be applied to
our problem by running a MTL algorithm each time a new
task arrives, while remembering all prior tasks. However, this
approach incurs a memory and computational burden. Trans-
fer learning lacks the sequential nature of our problem.

In online optimization, a sequence of functions fn(x) ar-
rive, and the goal is to minimize the regret [8–17]. The idea
of controlling the variation of the sequence of functions has
been studied in [18] and [19]. In [19], the assumption on how
the arriving functions change is equivalent to bounding

T

∑
n=2
‖x∗n−x∗n−1‖2

2 ≤ Gb.

Therefore, the work in [19] studies the regret while control-
ling the total variation in the optimal solutions over T time
instants. In contrast, we control the variation of the optimal
solutions at each time instant with (2) and then control the
excess risk at each time instant.

In the concept drift problem, we observe a stream of in-
coming data that potentially changes over time, and the goal
is to predict some property of each piece of data as it ar-
rives. After prediction, we incur a loss that is revealed to
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us. Some approaches for concept drift use iterative algorithms
such as SGD, but without specific models on how the data
changes. As a result, only simulation results showing good
performance are available.

Another relevant model is sequential supervised learning
(see [22]) in which we observe a stream of data consisting
of feature/label pairs (wn,yn) at time n, with wn being the
feature vector and yn being the label. At time n, we want to
predict yn given wn. Approaches based on sliding windows
of L consecutive pairs [23, 24] and hidden Markov models
(HMM) [25] have been studied.

None of the prior work discussed in this section involves
choosing the number of samples Kn at each time n to control
the excess risk. Most approaches instead focus on bounding
the regret or provide no guarantees.

2. ADAPTIVE SEQUENTIAL OPTIMIZATION WITH
ρ KNOWN

For analysis, we assume that diam(X )<+∞ and the follow-
ing assumptions on our functions fn(x) and the optimization
algorithm:

A.1 For the optimization algorithm under consideration,
there is a bound b(d0,Kn) such that

E [ fn(xn)]− fn(x
∗
n)≤ b(d0,Kn)

with Kn the number of samples from pn and
E‖xn(0)−x∗n‖2 ≤ d0, where xn(0) is the initial point
of the optimization algorithm at time n. Finally,
b(d0,Kn) is non-decreasing in d0.

A.2 Each loss function `(x,z) is differentiable in x. Each
fn(x) is strongly convex with parameter m, i.e.,

fn(y)≥ fn(x)+ 〈∇x fn(x),y−x〉+ 1
2 m‖y−x‖2

A.3 We can find initial points x1 and x2 that satisfy the ex-
cess risk criterion with ε1 and ε2 known, i.e.,
E [ fi(xi)]− fi(x

∗
i )≤ εi i = 1,2

Remarks: For assumption A.1, we assume that the bound
b(d0,Kn) depends on the number of samples Kn and not the
number of iterations. For SGD, generally the number of it-
erations equals Kn as each sample is used to produce a noisy
gradient. As an example, for SGD with a constant step size
µ = 1/

√
K, it holds that b(d0,K) = C1d0/

√
K +C2/

√
K for

closed form constants C1 and C2 [26]. The extended paper [1]
contains several collected examples of b(d0,K). In addition,
we set xn(0) = xn−1 meaning that we use the approximate
minimizer at time n− 1 as the starting point for the new ap-
proximate minimizer at time n. For assumption A.3, we can
fix Ki and set εi = b(diam(X )2,Ki) for i = 1,2. Finally, un-
der these assumptions, a slow changing assumption on fn(x)
instead of x∗n, i.e., fn(x

∗
n−1)− fn(x

∗
n) = ρ̄ , can be converted

to a bounded change condition on x∗n as in (3) by exploiting
strong convexity [27]:

‖x∗n−x∗n−1‖ ≤
2
m
( fn(x

∗
n−1)− fn(x

∗
n)) =

2ρ̄

m

This shows that placing an assumption on the change in x∗n is
natural.

Now, we examine the case when the change in minimiz-
ers, ρ in (2) or (3), is known. The analysis in this section is
the same under (2) or (3). We want to construct a bound εn on
the excess risk at time n in terms of Kn and ρ , i.e., εn such that
E[ fn(xn)]− fn(x

∗
n)≤ εn. The idea is to start with the bounds

from assumption A.3 and proceed inductively using the pre-
vious εn−1 and ρ from (2). Suppose that εn−1 bounds the
excess risk at time n−1. Using the triangle inequality, strong
convexity, Jensen’s inequality, and (2) we have

E‖xn−1−x∗n‖2 ≤

(√
2εn−1

m
+ρ

)2

(4)

In comparison, we could use the estimate diam2(X ) to bound
E‖xn−1−x∗n‖2 and select Kn. If the bound in (4) is much
smaller than diam(X )2, then we need significantly fewer
samples Kn to guarantee a desired excess risk. Now, by using
the bound b(d0,Kn) from assumption A.1, we can set

εn = b

(√2εn−1

m
+ρ

)2

,Kn

 ∀n≥ 3

which yields a sequence of bounds on the excess risk. Note
that this recursion only relies on the immediate past at time
n−1 through εn−1. To achieve εn ≤ ε for all n, we set

K1 = min{K ≥ 1 | b
(
diam(X )2,K

)
≤ ε}

and Kn = K∗ for n≥ 2 with

K∗ = min

K ≥ 1

∣∣∣∣∣ b

(√2ε

m
+ρ

)2

,K

≤ ε

 (5)

3. ESTIMATING ρ

In practice, we do not know ρ , and so we must construct an
estimate ρ̂n using the samples from each distribution pn. We
introduce one approach to estimate ρ under (2) and defer an-
other approach and estimates under (3) to [1]. We show that
for all n large enough with appropriately chosen sequences
{tn}, ρ̂n + tn ≥ ρ almost surely. With this property, we will
show that analysis similar to that in Section 2 holds.

3.1. Estimating One Step Change

First, we construct an estimate ρ̃i of the one step changes
‖x∗i −x∗i−1‖. Using the triangle inequality and variational
inequalities from [28] yields

‖x∗i −x∗i−1‖ ≤ ‖xi−xi−1‖+‖xi−x∗i ‖+‖xi−1−x∗i−1‖

≤ ‖xi−xi−1‖+
1
m
‖∇x fi(xi)‖+

1
m
‖∇x fi−1(xi−1)‖

We then approximate ‖∇x fi(xi)‖ = ‖Ezi∼pi [∇x`(xi,zi)]‖
by

Ĝi ,

∥∥∥∥ 1
Ki

Ki

∑
k=1

∇x`(xi,zi(k))
∥∥∥∥ (6)
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to yield the following estimate that we call the direct estimate:

ρ̃i , ‖xi−xi−1‖+
1
m
‖Ĝi‖+

1
m
‖Ĝi−1‖ (7)

3.2. Combining One Step Estimates

We average the one step estimates ρ̃i to yield a better estimate
ρ̂n =

1
n−1 ∑

n
i=2 ρ̃i of ρ at each time n under (2). The difficulty

in analyzing the direct estimate comes because in approximat-
ing ‖∇ fi(xi)‖ by ‖Ĝi‖ from (6), xi is dependent on all the
samples {zi(k)}Ki

k=1, which rules out the use of simple con-
centration inequalities. For analysis, we need the following
additional assumptions:

B.1 The loss function `(x,z) has uniform Lipschitz continu-
ous gradients in x with modulus L, i.e. ,
‖∇x`(x,z)−∇x`(x̃,z)‖ ≤ L‖x− x̃‖

B.2 Assuming X is d-dimensional, each component j of the
gradient error ∇x`(x,zn)−∇ fn(x) satisfies

E
[

exp
{

s(∇x`(x,zn)−∇ fn(x)) j

} ∣∣∣∣ x]≤ exp
{

1
2

Cg
d2 s2

}
We show that ρ̂n eventually upper bounds ρ . For analysis,
we consider starting with xi−1 and producing x̃i by the same
process as the one that produced xi except with an indepen-
dent draw of samples {z̃i(k)}Ki

k=1. Through this approach we
obtain exponential concentration inequalities. Applying the
Borel-Cantelli lemma then shows that eventually ρ̂n plus a
constant upper bounds ρ .

Theorem 1. If B.1-B.2 hold and the sequence {tn} satisfies
∑

∞
n=2 e−Cnt2

n < ∞ for all C > 0, then for a sequence of con-
stants {Cn} and for all n large enough it holds that
ρ̂n +Cn + tn ≥ ρ almost surely.

Proof. See [1].

3.3. Parameter Estimation

We may need to estimate parameters of the functions { fn(x)}
such as the strong convexity parameter m to compute b(d0,K).
Extensions to accomplish this are discussed in [1]. The anal-
ysis of parameter estimation is similar to the analysis of ρ

estimation.

4. ADAPTIVE SEQUENTIAL OPTIMIZATION WITH
ρ UNKNOWN

We now examine the case with ρ unknown. We extend the
work of Section 2 using the estimates of ρ in Section 3. Our
analysis depends on the following crucial assumptions:

C.1 For appropriate sequences {tn}, for all n sufficiently
large, it holds that ρ̂n + tn ≥ ρ almost surely.

C.2 b(d0,Kn) factors as b(d0,Kn) = α(Kn)d0 +β (Kn)

We have demonstrated that assumption C.1 holds for the di-
rect estimate of ρ (7) under (2). As long as C.1-C.2 hold, the
analysis in this section is the same under (2) and (3). We first
present a general result showing that for appropriate choices
of Kn, the excess risk is well-behaved.

Theorem 2. Under assumptions C.1- C.2 and with Kn ≥ K∗
for all n large enough almost surely with K∗ from (5), we have
limsupn→∞ (E[ fn(xn)]− fn(x

∗
n))≤ ε .

Proof. See [1].

4.1. Update Past Excess Risk Bounds

We first consider updating all past excess risk bounds as we
go. At time n, we plug-in ρ̂n−1+ tn−1 in place of ρ and define
for i = 1, . . . ,n

ε̂
(n)
i = b

(√ 2
m

ε̂
(n)
i−1 +(ρ̂n−1 + tn−1)

)2

,Ki


If it holds that ρ̂n−1+tn−1≥ ρ , then E [ fn(xn)]− fn(x

∗
n)≤ ε̂

(i)
n

for i = 1, . . . ,n. Assumption C.1 guarantees that this holds
for all n large enough almost surely. We can thus set Kn equal
to the smallest K such that

b

(√ 2
m

max{ε̂(n−1)
n−1 ,ε}+(ρ̂n−1 + tn−1)

)2

,K

≤ ε

for all n ≥ 3 to achieve excess risk ε . The maximum in this
definition ensures that when ρ̂n−1 + tn−1 ≥ ρ , Kn ≥ K∗ with
K∗ from (5). Therefore, we can apply Theorem 2.

4.2. Do Not Update Past Excess Risk Bounds

Updating all past estimates of the excess risk bounds from
time 1 up to n imposes a computational and memory burden.
We now analyze what happens when we do not update the
past excess risk bounds. Suppose that for all n≥ 3 we set

Kn =min

K ≥ 1

∣∣∣∣∣ b

(√2ε

m
+(ρ̂n−1 + tn−1)

)2

,K

≤ ε


(8)

This is the same form as the choice in (5) with ρ̂n−1 + tn−1 in
place of ρ . Due to assumption C.1, for all n large enough it
holds that ρ̂n + tn ≥ ρ almost surely. Then by the monotonic-
ity assumption in A.1, for all n large enough we pick Kn ≥K∗
almost surely. Therefore, we can apply Theorem 2 again.

5. EXPERIMENTS

We focus on two regression applications here for synthetic
and real data. Classification applications for synthetic and
real data with support vector machines (SVM) are in [1].

5.1. Synthetic Regression

Consider a regression problem with synthetic data using the
penalized quadratic loss `(x,z) = 1

2

(
y−w>x

)2
+ 1

2 λ‖x‖2

with z = (w,y) ∈ Rd+1. The distribution of zn is zero
mean Gaussian with covariance matrix Σn. Under these as-
sumptions, we can analytically compute minimizers x∗n of
fn(x) = Ezn∼pn [`(x,zn)]. We change Σn appropriately to
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ensure that ‖x∗n −x∗n−1‖ = ρ holds for all n. We find ap-
proximate minimizers using SGD with λ = 0.1. We estimate
ρ using the direct estimate. It can be checked that the as-
sumptions are satisfied for both experiments considered in
this section.

We let n range from 1 to 20 with ρ = 1, a target ex-
cess risk ε = 0.1, and Kn from (8). We average over twenty
runs of our algorithm. Figure 1 shows ρ̂n, our estimate of
ρ , which is above ρ in general. Figure 2 shows the number
of samples Kn, which settles down. We can exactly compute
fn(xn)− fn(x

∗
n), and so by averaging over the twenty runs

of our algorithm, we can estimate the excess risk (denoted
“sample average estimate”). Figure 3 shows this estimate of
the excess risk, the target excess risk, and our bound on the
excess risk from Section 4.2. We achieve at least our targeted
excess risk
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n
2 4 6 8 10 12 14 16 18 20

K
n

0

50

100

150 Direct Estimate

Fig. 2: Kn

n
2 4 6 8 10 12 14 16 18 20

E
xc

es
s 

R
is

k

0

0.05

0.1

0.15

0.2

0.25
Direct Estimate
Sample Average Estimate

Fig. 3: Excess Risk

5.2. Panel Study on Income Dynamics Income - Regres-
sion

The Panel Study of Income Dynamics (PSID) surveyed in-
dividuals every year to gather demographic and income data
annually from 1981-1997 [29]. We want to predict an individ-
ual’s annual income (y) from several demographic features
(w) including age, education, work experience, etc. chosen
based on previous economic studies in [30]. Conceptually,
the idea behind this experiment is to rerun the survey pro-
cess and determine how many samples we would need if we
wanted to solve this regression problem to within a desired
excess risk criterion ε .

We use the same loss function, direct estimate for ρ , and
minimization algorithm as the synthetic regression problem.
The income is adjusted for inflation to 1997 dollars with mean
$20,294. We average over twenty runs of our algorithm by
resampling without replacement [31]. For the sake of com-
parison, given a choice of samples {Kn}T

n=1 produced by our
approach, we compare against taking ∑

T
n=1 Kn samples at time

n= 1 and none afterwards. Note that this is what we would do
if we believed that the regression model does not change over
time. We are aware of no other methods to select the num-
ber of samples Kn to control the excess risk against which we
could compare our approach.

Figure 4 shows the test losses over time evaluated over
twenty percent of the available samples. The test loss for our
approach is substantially less than taking the same number of
samples up front. The square root of the average test loss over
this time period for our approach and all samples up front are
$1153±352 and $2805±424 respectively in 1997 dollars.

n
1982 1984 1986 1988 1990 1992 1994 1996

T
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t L
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Fig. 4: Test Loss

6. CONCLUSION

We introduced a framework for adaptively solving a sequence
of optimization problems with applications to machine learn-
ing. We developed estimates of the change in the minimiz-
ers used to determine the number of samples Kn needed to
achieve a target excess risk ε . Experiments with synthetic
and real data demonstrate that this approach is effective.

7. REFERENCES

[1] C. Wilson and V.V. Veeravalli, “Adaptive sequential
optimization with applications to machine learning,”
arXiv:1509.07422, Sep. 2015.

2645



[2] M. Mohri, A. Rostamizadeh, and A. Talwalkar, Foun-
dations of Machine Learning, The MIT Press, 2012.

[3] A. Agarwal, H. Daumé, and S. Gerber, “Learning multi-
ple tasks using manifold regularization.,” in NIPS, 2011,
pp. 46–54.

[4] T. Evgeniou and M. Pontil, “Regularized multi–task
learning,” in Proceedings of the Tenth ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, New York, NY, USA, 2004, KDD ’04, pp.
109–117, ACM.

[5] Y. Zhang and D. Yeung, “A convex formulation
for learning task relationships in multi-task learning,”
CoRR, vol. abs/1203.3536, 2012.

[6] S. Pan and Q. Yang, “A survey on transfer learning,”
IEEE Transactions on Knowledge and Data Engineer-
ing, vol. 22, no. 10, pp. 1345–1359, Oct 2010.

[7] A. Agarwal, A. Rakhlin, and P. Bartlett, “Matrix reg-
ularization techniques for online multitask learning,”
Tech. Rep. UCB/EECS-2008-138, EECS Department,
University of California, Berkeley, Oct 2008.

[8] N. Cesa-Bianchi and G. Lugosi, Prediction, Learning,
and Games, Cambridge University Press, New York,
N.Y., USA, 2006.

[9] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradi-
ent methods for online learning and stochastic optimiza-
tion,” Journal of Machine Learning Research, vol. 12,
pp. 2121–2159, 2011.

[10] J. Duchi and Y. Singer, “Efficient online and batch learn-
ing using forward backward splitting,” Journal of Ma-
chine Learning Research, vol. 10, pp. 2899–2934, 2009.

[11] E. Hazan, A. Agarwal, and S. Kale, “Logarithmic regret
algorithms for online convex optimization,” Machine
Learning, vol. 69, pp. 169–192, 2007.

[12] E. Hazan P. Bartlett and A. Rakhlin, “Adaptive online
gradient descent,” in Advances in Neural Information
Processing Systems, J.C. Platt, D. Koller, Y. Singer, and
S. Roweis, Eds., vol. 20, pp. 65–72. MIT Press, Cam-
bridge, MA, USA, 2008.

[13] S. Shalev-Shwartz and S.M. Kakade, “Mind the dual-
ity gap: Logarithmic regret algorithms for online opti-
mization,” in Advances in Neural Information Process-
ing Systems, D. Koller, D.Schuurmans, Y. Bengio, and
L. Bottou, Eds., MIT Press, 2009, vol. 21, pp. 1457–
1464.

[14] S. Shalev-Shwartz and Y. Singer, “Convex repeated
games and Fenchel duality,” in Advances in Neural In-
formation Processing Systems, MIT Press, Cambridge,
MA, USA, 2006, vol. 19, pp. 1265–1271.

[15] S. Shalev-Shwartz and Y. Singer, “Logarithmic regret
algorithms for strongly convex repeated games,” In The
Hebrew University, 2007.

[16] L. Xiao, “Dual averaging methods for regularized
stochastic learning and online optimization,” Tech.
Rep., Microsoft, March 2010, no. MSR-TR-2010-23.

[17] M. Zinkevich, “Online convex programming and gener-
alized infinitesimal gradient ascent,” in Proceedings of
the 20th International Conference on Machine Learning
(ICML), 2003, pp. 928–936.

[18] A. Rakhlin and K. Sridharan, “Online Learning with
Predictable Sequences,” ArXiv, vol. abs/1208.3728,
Aug. 2012.

[19] Chao-Kai Chiang, Tianbao Yang, Chia-Jung Lee,
Mehrdad Mahdavi, Chi-Jen Lu, Rong Jin, and Shenghuo
Zhu, “Online optimization with gradual variations,” in
COLT, 2012.

[20] Z. Towfic, J. Chu, and A. Sayed, “Online distirubted
online classifcation in the midst of concept drifts,” Neu-
rocomputing, vol. 112, pp. 138–152, 2013.

[21] C. Tekin, L. Canzian, and M. van der Schaar, “Context
adaptive big data stream mining,” in Allerton Confer-
ence, 2014, pp. 46–54.

[22] T. Dietterich, “Machine learning for sequential data: A
review,” in Structural, Syntactic, and Statistical Pattern
Recognition, 2002, pp. 15–30.

[23] T. Fawcett and F. Provost, “Adaptive fraud detection.,”
Data Min. Knowl. Discov., vol. 1, no. 3, pp. 291–316,
1997.

[24] N. Qian and T. Sejnowski, “Predicting the secondary
structure of globular proteins using neural network mod-
els,” Journal of Molecular Biology, vol. 202, pp. 865–
884, Aug 1988.

[25] Y. Bengio and P. Frasconi, “Input-output HMM’s for se-
quence processing,” IEEE Transactions on Neural Net-
works, vol. 7(5), pp. 1231–1249, 1996.

[26] A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro,
“Stochastic approximation approach to stochastic pro-
gramming,” SIAM Journal on Optimization, vol. 19, pp.
1574–1609, 2009.

[27] Stephen Boyd and Lieven Vandenberghe, Convex Opti-
mization, Cambridge University Press, New York, NY,
USA, 2004.

[28] A. Dontchev and R. Rockafellar, Implicit Functions and
Solution Mappings: A View from Variational Analysis,
Springer, New York, New York, 2009.

[29] “Panel study of income dynamics: public use dataset,”
Survey Research Center, 2015.

[30] K. Murphy and F. Welch, “Empirical age-earnings pro-
files,” Journal of Labor Economics, vol. 8, no. 2, pp.
202–29, 1990.

[31] T. Hastie, R. Tibshirani, and J.H. Friedman, The el-
ements of statistical learning: data mining, inference,
and prediction: with 200 full-color illustrations, New
York: Springer-Verlag, 2001.

2646


