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ABSTRACT

In matrix decomposition problems, one often seeks to repre-
sent a data matrix by the product of two matrices – one cap-
turing meaningful information contained in the data and the
other specifying how this information is combined to generate
the data matrix. We consider matrix decomposition that arises
in haplotype assembly, an important problem in genomics.
The observed matrix contains noisy samples of the product
of an informative matrix with rows having entries from a fi-
nite alphabet and a matrix with rows that are standard unit
basis. Structurally-constrained gradient descent algorithm for
finding the two aforementioned matrices is proposed and its
convergence is analyzed. Simulation results demonstrate su-
perior accuracy and speed of the proposed method compared
to state-of-the-art haplotype assembly techniques.

Index Terms— Matrix factorization, low-rank, gradient
descent, haplotype assembly

1. INTRODUCTION

Finding a low-rank approximation to a partially observed ma-
trix has gained a lot of attention in recent years (e.g., see
[1, 2, 3, 4] and the references therein). This line of research
has been motivated by a large number of applications, includ-
ing by now classical collaborative filtering problem where the
goal is to infer preference of users for unrated items based
on a limited number of rankings (as in, e.g., Netflix problem
[5]). In many scenarios, it is of interest to represent the rank-
k matrix M ∈ Rn×m as M = UVT where U ∈ Rn×k

and V ∈ Rm×k. Examples include applications to cluster-
ing [6] and sparse PCA [7]. This bi-linear parametrization
of the unknown matrix M leads to the problem of finding U
and V such that a chosen performance metric (e.g., the Frobe-
nius norm of the difference between the partial, noisy obser-
vations of M and UVT ) is optimized. The bi-linearity of
the representation renders the problem non-convex and, there-
fore, challenging. Among the often used heuristics, alternat-
ing minimization where one keeps either U or V fixed and
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optimizes over the other, has gained popularity [8, 4]. This is
due to the fact that each of the two subproblems is convex and
hence can be solved in a computationally efficient manner.

At the same time, there has been a surge of interest in
DNA sequencing and studies of genetic variations that it en-
ables. High-throughput sequencing platforms often employ
so-called shotgun sequencing strategy and oversample the
target genome with a library of relatively short overlapping
reads. Each read in this library provides information about
a subsequence of the chromosome from which the read is
sampled. In the haplotype assembly applications, the refer-
ence genome is typically known and therefore a read can be
mapped to the reference (i.e., relative positions of the reads
with respect to the reference can be established). A read that
stretches across multiple SNPs of a chromosome may be used
to assemble the haplotype associated with that chromosome.
Recent sequencing technologies are capable of generating
pairs of reads that are separated by inserts of unknown con-
tent but known length. These so-called paired-end reads help
connect information across large distances of a chromosome.

Sequencing is erroneous, which leads to ambiguities re-
garding the origin of a read and therefore renders the haplo-
type assembly challenging. Recent haplotype assembly meth-
ods focus on the minimum error correction (MEC) criterion
where the goal is to find the smallest number of nucleotides
in reads that need to be changed so that any read partitioning
ambiguities would be resolved. It has been shown that find-
ing optimal solution to the MEC formulation of the haplotype
assembly problem is NP-hard [9, 10]. In [11], the authors
used a computationally intensive branch-and-bound scheme
to minimize the MEC objective over the space of reads. High
complexity of the exact solution has motivated several heuris-
tics including the one in [12], where a greedy algorithm was
used to assemble haplotypes of the first complete diploid in-
dividual genome. A max-cut formulation of the haplotype as-
sembly problem was proposed in [13], and an efficient algo-
rithm (HapCUT) that solves it and significantly outperforms
the method in [12] was developed. The Bayesian methods re-
lying on MCMC and Gibbs sampling schemes were proposed
in [14] and [15], respectively. A greedy cut approach was pro-

2638978-1-4799-9988-0/16/$31.00 ©2016 IEEE ICASSP 2016



posed in [16], and a flow-graph based approach in [17], and,
most recently, maximum-likelihood scheme in [18].

In this paper, we formulate haplotype assembly as the
partially observed low rank matrix factorization problem and
propose a variant of the gradient descent algorithm to solve it
at low computational cost. The algorithm explicitly imposes
constraints on the special structure of the matrix U in factor-
ization M = UVT that is inherent to the problem.

2. MATHEMATICAL MODEL

Prior to haplotype assembly, one needs to infer the order of
nucleotides in reads (so-called base calling [19, 20]), align
reads to a reference, and perform SNP and genotype calling.
SNPs occur at a relatively low frequency, e.g., 1 polymor-
phism in 1000 nucleotides. Segments of the reads which do
not cover any SNP locations are discarded. Furthermore, a
read covering only a single SNP position does not help in
the process of inferring a haplotype and is hence discarded as
well. The remaining n reads (more precisely, the segments of
n reads bearing information relevant for haplotype assembly)
are organized into an n ×m SNP fragment matrix R, where
m denotes the haplotype length. The ith row of R, ri, con-
sists of the haplotype-relevant information provided by the ith

read. In humans and other diploid organisms, SNP sites are
bi-allelic (they are often so in polyploid ones as well) – this
means only two out of four possible nucleotides A, C, G or T
are possible to find in any SNP position. Therefore, we can
label the nucleotides in SNP positions using binary symbols
{1,−1} where the mapping between letters and binary sym-
bols at any position follows arbitrary convention. For conve-
nience, entries in ri that do not provide any SNP information
are labeled by 0. After such a labeling, the resulting matrix R
consists of ternary {−1, 0, 1} entries. Specifically, the (i, j)
entry of R is the information about the jth SNP site provided
by the ith read; if the ith read does not cover the jth SNP site,
the (i, j) entry of R is Rij = 0.

Let H = {h1, . . . ,hk} denote the set of haplotype se-
quences of a k-ploid organism. It is convenient to introduce a
projector operator PΩ(·) defined as

PΩ(M) =

{
Mij , if (i, j) ∈ Ω,

0, otherwise,

where Ω denotes the set of indices (i, j) such that Rij 6= 0
(i.e., Rij is an informative entry of R). Therefore, PΩ(M)
is an operator that describes how sequencing reads, each read
corresponding to a row of R, sample the haplotypes. For in-
stance, Rij = −1, (i, j) ∈ Ω implies that the ith read covers
the jth SNP positions and provides information encoded as “-
1”; it is unknown, however, which of the k haplotypes is sam-
pled by the ith read. In general, matrix R can be thought of
as being obtained by sampling, with errors, a low-rank n×m
matrix M,

M = UVT ,

where U and V are n × k and m × k matrices, respectively,
and where k denotes the ploidy (the number of haplotypes) of
an organism.1 The jth column of V, vj , is the sequence of
the ith haplotype, i.e., vj = hj ∈ H. The ith row of U, ui, is
the indicator of the origin of the ith read. More specifically,
the rows of U are the k-dimensional standard unit vectors
consisting of all 0’s except for one entry which is equal to 1.
For instance, ui = el indicates that the ith read is obtained
by sampling the lth chromosome/haplotype. Note that each
row of the (unobservable) matrix M, mi, is a full haplotype
sequence (i.e., mi ∈ H).

DNA sequencing is erroneous and thusPΩ(R) 6= PΩ(M).
We assume the model where the entries in R are perturbed
versions of the corresponding entries in M, i.e., the (i, j) ∈ Ω
entry in R, Rij , is obtained as

Rij =

{
Mij , w.p. 1− p,
−Mij , w.p. p,

where p denotes the sequencing/genotyping error rate.

3. STRUCTURALLY-CONSTRAINED GRADIENT
DESCENT

Given the SNP fragment matrix R, the haplotype assembly
task can be solved by performing the low-rank matrix factor-
ization M = UVT of the unobservable matrix M from its
noisy sample with missing entries, R. This can be done in a
computationally efficient manner by relying on, e.g., gradient
descent. Define the objective function

f(U,V) = ‖PΩ(R−UVT )‖2F , (1)

where ‖ · ‖F denotes the Frobenius norm of its argument. We
would like to find U and V that minimize f(U,V) in (1). Let
U0 and V0 denote the initial guesses of U and V, respec-
tively. Gradient descent search iteratively updates estimates
of U0 and V0 in the direction of the respective derivatives.
However, the conventional gradient descent algorithm does
not exploit the special structure of matrix U – in particular, it
ignores the fact that the rows of U are standard unit vectors
which may have detrimental effects on the accuracy of the
method. To enforce the structure of U, we perform iterations

Vt+1 = Vt − α∇f(Vt) (2)

and
Ut+1 = arg min

ui∈Φ
f(U,Vt+1), (3)

where the optimization in (3) is done by exhaustively search-
ing over k vectors in Φ = {e1, e2, . . . , ek} to find the most
likely Ut+1. Since the number of haplotypes k is relatively
small (typically, k ≤ 6), the complexity of the exhaustive
search (3) is very low. This modified gradient descent is for-
malized below as Algorithm 1.

1In the diploid (k = 2) case, V drops the rank since v1 = −v2 and thus
M is rank-1. In the k-ploid case (k > 2), the rank of V (and M) is k.
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Algorithm 1 Structurally-Constrained Gradient Descent

Input: The SNP matrix R
Initialization: Use power iteration method to generate k
left-singular vectors U0 and right-singular vectors V0.
Φ = {(1, 0, · · · , 0), (0, 1, 0, · · · , 0), · · · , (0, 0, · · · , 1)}.
repeat
∇f(Vt) = −2(PΩ(R−UtV

T
t ))TUt

Vt+1 = Vt − α∇f(Vt)
Ut+1 = arg min

ui∈Φ

∑
(i,j)∈Ω

‖PΩ(R−UtV
T
t+1)‖2F

until termination criterion is met.
Output: An estimate of the haplotype matrix V generated

by quantizing entries of the most recent iteration Vtmax

to ±1.

It can be shown (the proof omitted for brevity) that the
above algorithm converges if the step size is selected as

α = C
‖∇f(Vt)

T ‖2F
‖PΩ(Ut∇f(Vt)T )‖2F

,

where C ∈ (0, 1) is a constant.

4. RESULTS

To obtain numerical results in this section, we implemented
our algorithms in Matlab and ran the codes on a single core
processor laptop (2.7 GHz Intel Core i5, 8GB RAM).

When the ground truth is known, as in simulation studies,
the ability of an algorithm to reconstruct a haplotype may be
measured by the reconstruction rate. In the case of diploids,
the reconstruction rate is conveniently defined as [21]

Rr=1−min(D(h1, ĥ1) +D(h2, ĥ2), D(h1, ĥ2) +D(h2, ĥ1))

2m

where D(hi, ĥj) =
m∑
l=1

d(hil, ĥ
j
l ) denotes the generalized

Hamming distance between hi and ĥj , (h1,h2) is the pair
of true haplotypes, and (ĥ1, ĥ2) is the pair of reconstructed
haplotypes.

Using the data sets from [21], we compare performance
of our Algorithm 1 with several existing haplotype assembly
methods and report the results in Table 1. Specifically, we
show the comparison of the achieved reconstruction rates with
those of SpeedHap, FastHare, 2d-med, MLF and SHR-tree,
algorithms benchmarked and discussed in [21]. As evident
from the table, structurally-constrained gradient descent out-
performs all the competing methods. Note that the percentage
of observed entries in R in Table 1 is 1%.

We further tested the performance of our proposed algo-
rithm on the experimental data generated as part of the 1000
Genomes Project, an international study meant to provide a
detailed map of human genetic variation. The MEC score

Table 2: A comparison of our Algorithm 1 and HapTree.

chr GD (Algorithm 2) HapTree
MEC Time(s) MEC Time(s)

1 1300 3.35 1479 921.76
2 1763 4.84 1793 1908.00
3 1434 4.27 1610 920.13
4 1663 6.74 1840 950.73
5 1330 4.37 1488 829.37

(serving as a proxy for the reconstruction rate) and the run-
times of the structurally constrained gradient search and the
recently proposed HapTree [18] are shown in Table 2 for the
first 5 human chromosomes. As can be seen there, our pro-
posed algorithm achieves better accuracy and significant im-
provement in speed as compared to the competing scheme.

5. CONCLUSION

We studied the problem of reconstructing haplotypes using
high-throughput DNA sequencing reads. To this end, we pro-
posed a novel formulation of the problem as the one of fac-
torizing a partially observed low rank matrix. Each row of the
matrix corresponds to a sequencing read; the read is aligned
to the reference and spans only those columns associated with
single nucleotide polymorphisms covered by the read. Since
the reads are much shorter than the haplotype blocks, most
of the entries in each row of the data matrix are missing –
hence the matrix is only partially observed. Moreover, each
row can be thought of as being sampled from one among few
haplotype sequences – therefore, the matrix is low rank. Fi-
nally, since the sequencing is erroneous, the observed ma-
trix contains incorrect entries. We developed a structurally-
constrained gradient search algorithm that imposes the special
structure of the matrices in the decomposition. Performance
of the proposed algorithm was extensively tested, demonstrat-
ing its superiority in terms of both accuracy and speed over
competing haplotype assembly schemes.
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