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ABSTRACT

This paper addresses the problem of outlier detection in the
power grid. A sparse online least squares one-class support
vector machine classification algorithm is presented to detect
outliers in a data stream. An approximate linear dependence
criteria is used to obtain a sparse solution by sequentially pro-
cessing each data point only once, keeping with the require-
ment of data processing over a data stream. Experiments were
conducted on a two dimensional synthetic data set and for bad
data in a critical measurement in the IEEE 14 bus system to
evaluate the performance of the proposed algorithm.

Index Terms— outlier detection, online learning, sparsi-
fication

1. INTRODUCTION

Development of small, low cost, efficient sensor devices
and their widespread deployment has resulted in collection of
large volume of data that arrives continuously and often needs
to be processed as it arrives. Outlier detection is a fundamen-
tal step in data quality, management, and analysis tasks. For
example, in the power grid system, a large amount of data is
collected from sensors and then processed to provide a snap-
shot of the current system status of the grid to the operator.
An outlier in the sensor data could be an indicator of faulty
instruments, line faults, or false data injection attacks [1, 2].
Failure to promptly detect outliers in the incoming data may
compromise the operator’s ability to take remedial actions.

In the power system outlier detection is mostly studied in
the context of the state estimator where the most commonly
used method is the largest normalized residual (rNmax) test [1].
Other methods of bad data detection have been proposed in
recent literature [3, 4]. All of these solutions are performed
offline and require multiple runs through the state estimator
(SE), making them unsuitable for applications in data stream.
In our prior work in [5] we explored an online kernel density
based outlier detector with one-hop communication between
a node and its neighbor. This method however becomes com-
putationally expensive when the number of neighbors is large.
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In this paper we propose an online outlier detection algo-
rithm based on least squares one-class support vector machine
(SVM) classifiers for detecting outliers in a large power grid
network. The one-class (OC) SVM is an unsupervised learn-
ing method, proposed by Schölkopf et al. in [6] and further
advocated by Tax and Duin in [7], to extract regions in the
input space where most of the training objects lie. A least
squares (LS) version of the OC SVM was proposed by Choi
in [8] such that the solution can be obtained by solving a lin-
ear system instead of a quadratic programming problem in the
standard OC SVM. However this advantage comes at the cost
of loss of sparsity of the support vectors (SVs). Several ap-
proaches to sparsification of kernel-based solutions have been
proposed in the literature [9, 10, 11, 12]. In [13] the authors
obtain a sparse set of SVs for LS-OC-SVM classifier for de-
tection of abnormal events in video surveillance. However
their approach still requires the storage of all the training ob-
jects to obtain the decision hyperplane. In this paper we uti-
lize the approximate linear dependence (ALD) criterion [10]
to obtain a sparse representation of the decision hyperplane in
LS-OC-SVM. Our approach has lower computational com-
plexity and memory requirement than the non-sparse LS-OC-
SVM while still maintaining similar performance. Also, the
parameters are updated recursively, thus making this method
suitable for application on a data stream.

The remainder of the paper is organized as follows: Sec-
tion 2 gives a brief introduction of the standard OC-SVM and
its least squares version. ALD for sparsification is discussed
next in Section 3. Section 4 presents the criteria for outlier
classification. The performance of the proposed algorithm is
evaluated on synthetic data and in the IEEE 14-bus test sys-
tem [14] by comparing with the rNmax test in Section 5.

2. LEAST-SQUARES ONE-CLASS SVM

For training data x1, . . . , xn ∈ Rd the one-class (OC) SVM
proposed by Schölkopf et al. [6] is the optimization problem

min
1

2
‖w‖2 − ρ+ C

∑
j ξj (1)

subject to wTφ(xj) ≥ ρ− ξj and ξj ≥ 0,

where φ(·) : Rd → H is the mapping to a high dimensional
feature space such that the dot product in the image of φ can
be computed by evaluating a kernel k(x, y) = φ(x)Tφ(y).
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The parameter C is predefined and controls the fraction of
possible outliers [6] and ξj are the non-zero slack variables.

The goal of the standard OC-SVM is to map the data
to a high dimensional feature space and obtain a hyperplane
f(x) = wTφ(x)−ρ = 0 with maximal distance ρ/ ‖w‖ from
the origin such that most of the data points reside beyond it.
f(x) can be obtained by solving the dual problem [6]

min
1

2

∑
i,j αiαjk(xi, xj) (2)

s.t. 0 ≤ αj ≤ C and
∑
αj = 1,

where αj are the Lagrangian multipliers. The solution in the
primal space is then given by

w =
∑
αjφ(xj). (3)

The least squares (LS) version of the standard OC-SVM
was proposed by Choi in [8] by using a quadratic loss func-
tion and equality constraint. The hyperplane obtained by LS-
OC-SVM is one such that the distances to most of the train-
ing points are minimized in a regularized least squares sense.
Thus for any new data, the distance to the hyperplane may be
used to measure how well it resembles the training set. The
optimization problem for LS-OC-SVM is formulated as

min J = min
1

2
‖w‖2 − ρ+ C

2

∥∥ξ∥∥2 , (4)

subject to w = Φα and ξ = 1ρ−ΦTw,

where the matrix Φ = [φ(x1), . . . , φ(xn)] and the column
vector 1 consists of all ones. Substituting w and ξ into (4)

J =
1

2
αTKα− ρ+ C

2
‖1ρ−Kα‖2 , (5)

where K denotes the kernel matrix with entries K(i, j) =
k(xi, xj) = φ(xi)

Tφ(xj). Taking derivative of (5) with re-
spect to α and ρ and setting equal to zero yields:[

1T 1 −1TK
−1 K + I/C

] [
ρ
α

]
=

[
1/C
0,

]
(6)

where 0 is a column vector containing all zeros and I is the
identity matrix. Applying block matrix inversion lemma [15],

ρ =
(
1T (K + I/C)−11

)−1
, (7)

α =
(
1T (K + I/C)−11

)−1 (
(K + I/C)−11

)
. (8)

The hyperplane is then given by f(x) = αT k− ρ = 0, where
k denotes a vector with entries k(xj , x), j = 1, . . . , n.

3. SPARSE ONLINE LS ONE-CLASS SVM

In an online application a sparse solution for the LS-OC-SVM
is desirable so that instead of storing the entire history of
training set, the solution can be stored in a compact form.
However the LS-OC-SVM in Section 2 does not introduce
sparsity by itself due to the quadratic loss function in the
objective function (4). Several approaches to sparsification
of kernel-based solutions have been proposed in the litera-
ture [9, 10, 11, 12]. In this paper we utilize the approximate
linear dependence (ALD) criterion proposed by Engel et al.
in [10] to induce sparsity in the LS-OC-SVM solution.

In an online outlier detection scheme we sequentially pro-

cess a stream of incoming data points. As more and more data
become available the memory and processing requirement in-
creases indefinitely. We adopt a dictionary for the sparsity
requirement [10]. Let the dictionary at time step n − 1 be
X (n−1)
D = {xD,1, . . . , xD,m} where m < n− 1; xD,j are the

support vectors (SVs) for the LS-OC-SVM. When a new data
point xn arrives we compute the following ALD cost [10]:

δ = min
β

∥∥∥∑m
j=1 βjφ(xD,j)− φ(xn)

∥∥∥2 , (9)

which is the distance of xn to the linear span of the dictio-
nary in the feature space. By expanding the inner product and
substituting φ(x)Tφ(x′) = k(x, x′), we can rewrite (9) as

δ = min
β
{βTKD,(n−1)β − 2βT kn−1 + kn}, (10)

where [KD,(n−1)]i,j = k(xD,i, xD,j); [kn−1]i = k(xD,i, xn)
and kn = k(xn, xn). Solving (10) yields

β
n
= K−1D,(n−1)kn−1, (11)

δn = knn − kTn−1K−1D,(n−1)kn−1. (12)

If δn is less than an accuracy parameter γ, then φ(xn) can
be approximated by some linear combination of the present
dictionary members within a squared error γ. Defining Φn =
[φ(x1), . . . , φ(xn)] and ΦD,(n) = [φ(xD,1), . . . , φ(xD,m)],
we can then write Φn ≈ ΦD,(n)B

T
n , where [Bn]i,j = βi,j ,

for i, j = 1, . . . , n. Then from (3)
wn = Φnαn ≈ ΦD,(n)B

T
nαn = ΦD,(n)α̂n = ŵn, (13)

where α̂n = BT
nαn is the m× 1 approximation of the n× 1

vector αn. We can now rewrite optimization problem (4) as
an online optimization problem as

min Jn = min
ŵn,ρ

1

2
‖ŵn‖

2 − ρn +
C

2

∥∥∥ξ
n

∥∥∥2 (14)

s. t. ŵn = ΦD,(n)α̂n, and ξ
n
= 1ρn −ΦT

n ŵn.

Substituting ŵn and ξ
n

into (14), we have

Jn=
1

2
α̂TnKD,(n)α̂n−ρn+

C

2

∥∥1ρn−BnKD,(n)α̂n
∥∥2. (15)

Setting the derivatives of (15) with respect to α̂n and ρn to
zero, we obtain the following set of linear equations:[

1T 1 −1TBnKD,(n)
−BT

n1 I/C + BT
nBnKD,(n)

] [
ρn
α̂n

]
=

[
1/C
0

]
(16)

Defining Pn = I/C+BT
nBnKD,(n) and applying block ma-

trix inversion lemma [15], we can compute ρn and α̂n as:

ρn =
(
C1T

(
I−BnKD,(n)P

−1
n BT

n

)
1
)−1

, (17)

α̂n = P−1n BT
n1
(
C1T

(
I−BnKD,(n)P

−1
n BT

n

)
1
)−1
. (18)

Note that when there is no sparsity, i.e., Bn = I, (17) and
(18) reduces to (7) and (8), respectively.

In the online data stream application, ρ and α̂n need to be
updated every time a new data point becomes available. At
time step n, one of the following two cases can happen:
Case 1: δn ≤ γ, i.e., φ(xn) is approximately linearly de-
pendent on X (n−1)

D and therefore, not included in the dictio-
nary, i.e., X (n)

D = X (n−1)
D . Here the matrix KD remains un-
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changed, only B is updated as Bn = [BT
n−1, βn]

T . Then
we have Pn = Pn−1 + β

n
kTn−1. By applying the Sherman-

Morrison formula [15] we can compute P−1n recursively as

P−1n = P−1n−1 −
P−1n−1βnk

T
n−1P

−1
n−1

1 + kTn−1P
−1
n−1βn

. (19)

Then ρn and α̂n are updated using (17)-(18).
Case 2: δn > γ. In this case xn is added to the dictionary,
i.e., X (n)

D = X (n−1)
D ∪ {xn} and m = m + 1. Accordingly

both KD and B are updated. Then we have

Bn =

[
Bn−1 0
0T 1

]
. (20)

The recursive formula for K−1D,(n) and P−1n are given by:

K−1D,(n) =

[
KD,(n−1) kn−1
kTn−1 kn

]−1
=

[
K−1D,(n−1) 0

0T 0

]
+

1

δn

[
β
n
−1

] [
β
n
−1

]T
(21)

P−1n =

[
Pn−1 BT

n−1Bn−1kn−1
kTn−1 kn + 1/C

]−1
=

[
P−1n−1 0
0T 0

]
+

+

[
−P−1n−1B

T
n−1Bn−1kn−1
1

] [
−P−Tn−1kn−1

1

]T
kn + 1/C − kTn−1P−1n−1BT

n−1Bn−1kn−1
. (22)

Finally we compute ρn and α̂n using (17)-(18).

4. OUTLIER DETECTION

An outlier is a data point that appears different from the other
data points within the sample space. In an online application
scenario when a new data point becomes available, three pos-
sible cases can happen:
• it closely resembles the learned input distribution,
• it represents a change in the underlying distribution of

the input data,
• it differs significantly from the learned input distribu-

tion and indicates an outlier.
The sparse online LS-OC-SVM finds the hyperplane that

minimizes the squared distances to the images of the training
points in the feature space. Therefore, the distance from the
hyperplane can be used as a measure of resemblance between
a new data point and the training set. For new data xn, the
distance of φ(xn) from the hyperplane can be computed as

d(xn) =
∣∣∣α̂Tn−1kn−1 − ρn∣∣∣/√α̂Tn−1KD,(n−1)α̂n−1. (23)

If d(xn) is greater than a threshold dth then we say that xn
differs significantly from the training objects seen so far, and
is a possible outlier. However whether this data point indi-
cates a change in the underlying distribution or its a true out-
lier still needs to be determined.

In the proposed sparse online LS-OC-SVM our goal is to
build a diverse support vector dictionary to approximate the
input space while inducing sparsity. To achieve that we uti-
lized ALD measure δn in Section 3. When an outlier data

arrives the machine can detect a possible outlier using the
distance measure. However it is difficult to distinguish be-
tween a change in underlying distribution and a true outlier.
In both cases the ALD measure will be higher that the thresh-
old. But if a true outlier is added into the SV dictionary, it will
have detrimental effect on the estimation of the decision hy-
perplane. On the other hand if a non-outlier but differing data
point were to be excluded from the SV dictionary we would
fail to construct a diverse enough dictionary.

To overcome this we introduce another threshold γ2 for
the ALD measure assuming the change in the underlying dis-
tribution is gradual. After comparing the distance threshold,
before a data point is added as an SV we have three cases:

• δn ≤ γ1: very similar to the dictionary; only hyper-
plane updated.
• γ1 < δn ≤ γ2: somewhat similar; both dictionary and

hyperplane updated.
• δ > γ2: very dissimilar; discard without updating ei-

ther dictionary or hyperplane.

Similar approach has been used in [12]. In an online appli-
cation it is however necessary to use a time varying γ2, i.e.,
γ2 should have a large value while the size of the data set ob-
served is still small, and then gradually decrease. This helps
maintain a relatively larger dictionary at the beginning of the
learning algorithm.

5. SIMULATION RESULTS

To evaluate the performance of our proposed method we first
applied it to a synthetic data set and then implemented the out-
lier detection in the power grid data, using a Gaussian kernel
k(x1, x2) = exp(−‖x1 − x2‖ /σ2).

5.1. Decision boundaries on synthetic data

First we evaluate the performance of sparse online LS one-
class SVM on the square-noise data set [16]. Fig. 1 shows
the decision boundaries obtained using OC-SVM, LS-OC-
SVM and the proposed sparse online LS-OC-SVM meth-
ods. The OC-SVM decision boundary was obtained using
LIBSVM-3.20 library [17] with parameters σ2 = 0.2 and
C = 1/(0.12n). For both batch and online LS-OC-SVM
we set σ2 = 0.045 and C = 1. For the online ver-
sion we set γ1 = 0.01 and after observing 50 data points
γ2 = max(exp(−m/100), 2γ1) is set.

From fig. 1 we observe that the SVs chosen by the stan-
dard OC-SVM algorithm are in fact outliers. This occurs
because the algorithm tries to find the hyperplane such that
most data points lie beyond it. Thus the data points located
at the edge of the data set are chosen as support vectors. On
the other hand, the offline LS-OC-SVM obtains a decision
boundary that is more representative of the data. The draw-
back is that now every data point acts as an SV. Finally the
decision region obtained by the proposed method is smoother
and does not pick any outlier as an SV.
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Fig. 1. Comparison of decision boundaries obtained by OC-
SVM (σ = 0.2, C = 1/(0.12n)), offline LS-OC-SVM (σ2 =
0.045, C = 1) and sparse online LS-OC-SVM (σ2 = 0.045,
C = 1, γ1 = 0.01). The solid red circles represent the support
vectors in OC-SVM and sparse online LS-OC-SVM.

5.2. Outlier detection in IEEE 14-bus system

To evaluate the performance of the proposed outlier detec-
tion algorithm we implemented the algorithm in the IEEE 14-
bus test system [14]. The network diagram of the test sys-
tem is shown in Fig. 2. We compare the performance of our
algorithm for detection of bad data in critical measurement
with one of the most commonly used bad data identification
method in the power system, the largest normalized residual
test (rNmax test). A critical measurement is the one whose
elimination from the measurement set renders the system un-
observable. The rNmax test fails to detect bad data in this type
of measurements [1]. Using the proposed method we are able
to detect bad data in critical measurements.

We used the state estimator in the MATPOWER softwa-

Fig. 2. IEEE 14 Bus test system [14]

ter [18] as a tool for the rNmax test. The measurement config-
uration used for the simulations is given in Table 1.
Table 1. Measurement configuration for IEEE 14-bus system

Power injection At buses 1, 2, 3, 8
Power flow At branches 1-2, 1-5, 2-4, 2-5, 4-5, 4-7,

4-9, 5-6, 6-11, 6-13, 9-10, 9-14, 12-13
Voltage magnitude At buses 3, 6, 8, 10, 14

Under the measurement configuration described in Ta-
ble 1, P4−7 is a critical measurement. The true value for this
flow is P4−7 = 0.2285p.u. The residual for this measure-
ment will always be zero and therefore, any bad data in this
measurement cannot be identified by the rNmax test. To ap-
ply our online outlier detection technique we create a stream
of 1000 samples by adding Gaussian noise N (0, 0.0004)
to the true value. We then randomly inject five bad data
points in this data stream. For outlier detection we con-
sidered the vector x = [P4−7, P4−2, P4−5, P4−9]

T which
contains the concerned measurement and the available mea-
surements from the neighboring buses. The parameters used
for online LS-OC-SVM are σ2 = 0.002, γ1 = 0.0001,
γ2 = max(exp(−m/50), 3γ1). The values of the bad mea-
surements at P4−7 and the performance of the different bad
data detection algorithm is shown in Table 2. From the table
we see that the proposed online outlier detection technique
was able to identify every bad measurement before the data
was fed to the state estimator.
Table 2. Detection of bad data in a critical measurement P4−7

Bad data in P4−7 rNmax test Sparse LS-OC-SVM
0.3152p.u. Not detected Detected
0.0660p.u. Not detected Detected
0.3828p.u. Not detected Detected
0.1477p.u. Not detected Detected
0.3315p.u. Not detected Detected

6. SUMMARY
This paper proposes a sparse online LS-OC-SVM for outlier
detection in the power grid. The algorithm identifies outliers
in an online fashion before the state estimation process, with-
out relying on the observability of the grid. From simulations
performed on the IEEE 14-bus system we observed that the
proposed method outperforms the widely used rNmax test.
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