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ABSTRACT

In this paper machine learning and human learning are applied

jointly to optimize the training of linear regression. Human learning

is exploited to label extra training data so as to resolve problems

such as insufficient training and over-fitting. Considering the in-

evitable human errors in labeling, two machine learning algorithms

are developed which optimize the selection of the extra training data

and detect human errors during linear regression. The first algorithm

assumes sparse human errors and implements a sparse optimization

within a sequential active learning procedure. The second algorithm

deals with non-sparse human errors. By exploiting the IRT (item

response theory) to model the distribution of human errors, it recon-

structs the training data set so that the human labeling errors become

sparse. Simulations are conducted to show that the two algorithms

are effective in resolving the insufficient training and human labeling

error problems.

Index Terms— machine learning, human learning, item re-

sponse theory, linear regression, active learning, training

1. INTRODUCTION

In today’s big data age, it is of paramount importance to develop

efficient methods to extract information from the massive amounts

of data. Since it is becoming prohibitively demanding for human to

process the data directly, machine learning becomes popular. Linear

regression is one of the important data processing tasks where ma-

chine learning has attracted great research effort and has found wide

application [1].

While machine learning is dominating, the role of human learn-

ing should not be overlooked. It is well known that human plays

important roles in machine learning design, feature selection, algo-

rithm development, etc [2]. However, an interesting problem that

has not been well-studied is how to combine machine learning algo-

rithms and human learning principles together so as to take the ad-

vantages of each other. Today’s data volume may be too demanding

for human. But human learning has some important characteristics

that can be helpful to resolve many inherent challenges of machine

learning, such as case representation, feature selection, over-fitting,

generalization, etc.

To show the great benefits of integrating machine learning and

human learning together, we focus on a typical task that needs both

of them, i.e., training data optimization in robust linear regression.

Supervised machine learning such as linear regression requires a

human-labeled training data set that must be sufficiently long, well

case-representative, and correctly labeled. However, considering the

high complexity and dimensionality of many practical linear regres-

sion tasks, the initially provided training data may be insufficient,

biased, skewed, and error-prone. This causes many problems, such

as the well-known over-fitting problem in machine learning [2].

To resolve the insufficient training data issue, one of the popu-

lar approaches is to integrate human learning into machine learning

algorithms for labeling more and better training data. This has been

intensively investigated in terms of active learning [3]-[7]. In con-

trast, the human labeling error issue is more challenging. The cause

of human error is complex, and may depend on the data processing

task, noise level, human workload, human cognition capability, etc.

In case the error probability is low enough so that the labeling er-

rors become sparse, robust linear regression approaches such as [8]

can be adapted to resolve this issue, which can estimate the sparse

labeling errors while learning the linear regression vectors.

In this paper, we address these issues together within a frame-

work of joint human learning and machine learning. Specifically,

we consider the case when the initial training data labeled by human

are both insufficient and error-prone. We will develop two new ro-

bust linear regression algorithms based on both the sequential active

learning method [3] and the robust linear regression method [8]. We

apply sequential active learning with human learning to look for ex-

tra and better training data under appropriate human workload con-

siderations. To address the human error in training data labeling, we

first integrate the sequential active learning algorithm with a sparse

optimization to mitigate sparse human errors. Then, more impor-

tantly, we convert the non-sparse human error case into the sparse

human error case based on the item response theory (IRT) [9].

The organization of this paper is as follows. In Section 2, we

give the linear regression model. In Section 3, we develop the new

algorithms with machine learning and human learning tightly cou-

pled together. Simulations are conducted in Section 4, and conclu-

sions are given in Section 5.

2. LINEAR REGRESSION MODEL WITH ACTIVE

LEARNING

We consider the classical linear regression problem, where a scalar

response yi is to be predicted using N known (input) data samples

xi = [xi,1, · · · , xi,N ]T , where (·)T denotes transpose. The data

model of the linear regression problem is

yi = x
T
i θθθ + ǫi, i = 1, · · · , I, (1)

where θθθ is the N × 1 regression vector, ǫi is the noise (or modeling

error), and I is the total number of data records. We assume i.i.d.

Gaussian noise ǫi with zero-mean and variance σ2
ǫ .

As in typical supervised linear regression algorithms, we label

and use the first L data records (yi,xi), i = 1, · · · , L, as the training
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data set. The values of yi are labeled by human. Stacking together

all the training data records, we have

yL = XLθθθ + ǫǫǫL, (2)

where XL = [x1, · · · ,xL]
T is the L×N input data matrix, yL =

[y1, · · · , yL]
T is the L × 1 labeled output data vector, and ǫǫǫL =

[ǫ1, · · · , ǫL]
T is the Gaussian noise vector. A standard least-squares

estimator gives the optimal estimation of θθθ as

θ̂θθ =
(
X

H
LXL

)+

X
H
L yL, (3)

where (·)H denotes Hermitian, and (·)+ denotes pseudo-inverse.

The use of pseudo-inverse rather than matrix inverse permits us

to consider many special training data issues, such as labeling er-

rors, skewed training data, or insufficient amount of training data,

etc. These issues may make the matrix XH
LXL singular or ill-

conditioned.

The estimated θ̂θθ can then be used to predict the output ŷi = xT
i θ̂θθ

for all the unlabeled data xi, i = L+ 1, · · · , I .

Active learning is a general methodology to deal with the in-

sufficient training data issue. With active learning, linear regression

algorithms select some extra data records from {xi|L+1 ≤ i ≤ I}
and ask human for labeling. These newly labeled data records will

be used together with the initial training data set (yL,XL). Con-

sidering the human workload constraint, the number J of the newly

labeled data records can not be too big. Therefore, active learning

needs to find the extra data records that contribute the most to the ex-

isting training data set. The sequential active learning algorithm in

[3] selects a data record in each iteration to maximize the difference

between the new and old estimations of θ̂θθ.

3. JOINT MACHINE LEARNING AND HUMAN

LEARNING IN LINEAR REGRESSION

3.1. Combining sequential active learning and sparse optimiza-

tion under a sparse human error model

Consider first the insufficient training issue in linear regression. We

follow the sequential active learning algorithm of [3] to label J extra

training data, where J ≤ I − L. This can be implemented in J
iterations. In each iteration j, where j = 1, · · · , J , we need to

select a new training data vector zj from the set Xj = {xℓ|L+ 1 ≤
ℓ ≤ I, xℓ 6= zi, 1 ≤ i ≤ j − 1}. There are I − L − j + 1 data

vectors xℓ in the set Xj .

Without loss of generality, let us consider the jth iteration. In

the beginning of this iteration, before selecting zj , we have the

labeled training data set (yL+j−1,XL+j−1), where yL+j−1 =
[yT

L , u1, · · · , uj−1]
T , and ui is the correct labeling of the data

record ui = zTi θθθ + ǫi. Note that (ui, zi), i = 1, · · · , j − 1,

are the extra training data selected and labeled in the previous j − 1
iterations. With this labeled data set, from (3) we have the estimation

θ̂θθ(j − 1) =
(
X

H
L+j−1XL+j−1

)+

X
H
L+j−1yL+j−1. (4)

We let θ̂θθ(0)
△
= θ̂θθ of (3) as the initial condition.

To select the new training data vector zj , we solve the following

optimization

zj = arg max
z∈Xj

‖θ̃θθ(j) − θ̂θθ(j − 1)‖2, (5)

where the estimation

θ̃θθ(j) =
(
X̃

H
L+jX̃L+j

)+

X̃
H
L+jỹL+j (6)

is similar to (4) but with X̃L+j =
[
XT

L+j−1 z
]T

and ỹL+j =

[yT
L+j−1, zT θ̂θθ(j − 1)]T . Specifically, when calculating θ̃θθ(j) for

each candidate vector z ∈ Xj , since we do not have the labeled

value uj yet, we simply use the estimation zT θ̂θθ(j − 1). A different

and more complex way of estimating uj was used in [3].

Since only one vector zj is to be selected in the optimization

(5), a straightforward way is to search exhaustively over all the I −
L− j +1 data vectors in the set Xj and select the one that gives the

maximum value ‖θ̃θθ(j)−θ̂θθ(j−1)‖2. The optimization (5) means that

the vector zj induces the maximum change in the linear regression

vector estimation and thus may be the most informative one.

After zj is selected, human learning kicks in to label the

output uj . Then we can insert the new training data (uj , zj)
into the existing training data set to form (yL+j ,XL+j) where

XL+j =
[
XT

L+j−1 zj
]T

and yL+j = [yT
L+j−1, uj ]

T , and

calculate θ̂θθ(j) similarly to (4). After this, the new iteration j + 1
will start.

We need to address the inevitable human labeling errors in this

active learning procedure. Human errors can affect all the training

data. Following the robust linear regression formulation of [8] which

deal with outliers, we model the labeling error by oi which changes

the true value model (1) to the error labeling model

yi = x
T
i θθθ + ǫi + oi, i = 1, · · · , I. (7)

Note that the labeled value yi in (7) may no longer be the true value

of (1). However, for notational convenience, we reuse the same vari-

able yi. Similarly, although oi exists in the training data set only, we

have defined oi for all 1 ≤ i ≤ I since each i is the selection and

labeling candidate in the sequential active learning procedure.

We assume that the vector oI = [o1, · · · , oI ]
T is sparse in this

subsection. Non-sparse oI will be addressed in the next subsection.

Consider again the jth iteration of the sequential active learning

procedure. We need to revise (4) so as to estimate θ̂θθ(j − 1) robustly

from human labeling errors. This can be conducted by the joint op-

timization

min
θθθ,oL+j−1

‖yL+j−1 −oL+j−1 −XL+j−1θθθ‖+λ0‖oL+j−1‖0, (8)

which estimates θ̂θθ(j − 1) and the sparse labeling error vector

oL+j−1 = [o1, · · · , oL+j−1]
T simultaneously. The ℓ0 norm

‖oL+j−1‖0 is to guarantee the sparsity of the human error vec-

tor oL+j−1. By choosing appropriate weighting coefficient λ0, we

can make oL+j−1 to have various sparsity values.

Because ℓ0 norm is not convex, we can replace it by the convex

ℓ1 norm. Then the optimization (8) is changed to

min
θθθ,oL+j−1

‖yL+j−1 −oL+j−1 −XL+j−1θθθ‖+λ1‖oL+j−1‖1, (9)

which is convex in either θθθ or oL+j−1.

As shown in [8], a two-step procedure can find the solution to

(9). First, conditioned on θθθ, we estimate oL+j−1 from the convex

optimization

ôL+j−1 =arg min
oL+j−1

‖yL+j−1 − oL+j−1 −XL+j−1θθθ‖

+ λ1‖oL+j−1‖1. (10)
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Second, with the estimated ôL+j−1, we estimate θθθ(j − 1) as

θ̂θθ(j − 1) =
(
X

H
L+j−1XL+j−1

)+

X
H
L+j−1(yL+j−1 − ôL+j−1).

(11)

Furthermore, we can replace θθθ of (10) by θ̂θθ(j − 1) of (11), which

changes the optimization (10) to

ôL+j−1 = arg min
oL+j−1

‖(IL+j−1 −XL+j−1(X
H
L+j−1XL+j−1)

+

×X
H
L+j−1)(yL+j−1 − oL+j−1)‖+ λ1‖oL+j−1‖1,

(12)

where IL+j−1 is an (L+ j− 1)× (L+ j− 1) dimensional identity

matrix. The vector ôL+j−1 now depends on the training data set

(yL+j−1,XL+j−1) only, not on the regression vector θθθ.

Therefore, to solve the optimization (9), we first solve (12) to

obtain ôL+j−1 via convex optimization, and then use (11) to cal-

culate θ̂θθ(j − 1). This replaces (4) in the sequential active learning

procedure.

To conduct the next step of the sequential active learning, i.e.,

optimizing (5) so as to select the new data record zj , we need to

evaluate θ̃θθ(j). Based on (6) and (11), we have

θ̃θθ(j) =
(
X̃

H
L+jX̃L+j

)+

X̃
H
L+j

[
yL+j−1 − ôL+j−1

zT θ̂θθ(j − 1)

]
. (13)

The estimation ôL+j−1 of (12) is still used in (13).

In summary, the algorithm for the sequential selection of the

extra training data while mitigating the sparse human labeling errors

is given below.

Algorithm 1: Linear regression with sparse human error

i) Initialize: linear regression with training (yL,XL) (12) (11)

ii) For iteration j = 1, 2, · · · , J , do

1) for each z ∈ Xj , calculate θ̃θθ(j) (13),

2) select the optimal zj that maximizes (5),

3) label uj for new training data (uj , zj) (human learning),

4) form (yL+j ,XL+j), update linear regression (12) (11).

Output θ̂θθ(J) and linear prediction ŷI = XIθ̂θθ(J).

Inside this machine learning algorithm, the step (3) involves hu-

man learning to label the extra training data. There are J iterations to

find J extra training data, and there is a convex optimization in each

iteration. The value J can be adjusted according to human workload

and human error principles.

3.2. Robust linear regression for non-sparse human errors

One of the major limitations of Algorithm 1 is that the labeling error

vector oL+j has to be sparse in order for the convex sparse optimiza-

tion to work. There are many cases that human errors are non-sparse.

In this subsection, we develop a way to reconstruct a new training

data set with sparse human labeling errors. This is conducted by

removing the training data that are more likely to have errors. By

using those data that are less likely to have errors, we can effectively

change the non-sparse error cases into the sparse case so Algorithm

1 can still be used.

We model the human labeling error by the item response theory

(IRT). The basic idea of IRT is to use some item response function

(IRF) to describe the probability for human to make correct decisions

on a task [9]. As a typical IRF, a person with cognition capability

(or intelligence) s can label the ith training data correctly with prob-

ability

qi = ci +
1− ci

1 + e−ai(s−bi)
, (14)

where the parameter bi denotes the difficulty level of labeling the ith
data, ci and ai are systematic parameters regarding the data label-

ing task. We assume that bi depends only on the noise magnitude

|ǫi|, since higher noise makes human labeling more difficult. The

probability of error-labeling of the data record (yi,xi) is then

p(|ǫi|) = (1− ci)

(
1−

1

1 + e−ai(s−|ǫi|)

)
, (15)

which is an increasing function of |ǫi|.
From the model (7), if the data are real, then |ǫi| has folded

normal distribution with probability density function f(x) =

2

σǫ

√
2π

e
− x2

2σ2
ǫ . It has mean σǫ

√
2/π and variance (π − 2)σ2

ǫ/π.

If the data are complex, then |ǫi| has Rayleigh distribution with

probability density function f(x) = x

σ2
ǫ
e
− x2

2σ2
ǫ , whose mean and

variance are σǫ

√
π/2 and (4− π)σ2

ǫ/2, respectively.

The percentage of error-labeled training data, or the average

probability for a data to be labeled in error, is

P =

∫ ∞

0

p(x)f(x)dx. (16)

We have P ∈ [0, 1]. (L + j)P is the number of non-zero entries

in oL+j . Obviously, a small P means sparse labeling error while a

large P means non-sparse labeling error. Note that the value of the

error oi can have various distributions which are assumed unknown

in this paper.

Consider the jth iteration of the sequential active learning with

labeling error mitigation. Define vL+j−1 = yL+j−1−XL+j−1θθθ =
oL+j−1 + ǫǫǫL+j−1, which contains all the error and noise informa-

tion. Replacing θθθ with the standard linear regression vector estima-

tion θ̂θθ of (3), we have

vL+j−1 = (IL+j−1

−XL+j−1(X
H
L+j−1XL+j−1)

+
X

H
L+j−1

)
yL+j−1. (17)

Then we can use vL+j−1 = [v1, · · · , vL+j−1]
T of (17) to deter-

mine approximately whether each vi has error or not.

Without the error oi, the distribution of vi = ǫi is N (0, σ2
ǫ ).

With the error oi, the distribution of vi = oi + ǫi is the convolution

of the distributions of ǫi and oi which is unknown. Nevertheless,

based on the error-labeling distribution p(|ǫi|) of (15), to reduce the

percentage of labeling errors from P to ηP , we just need to find a

threshold value γ such that

(1− p(|ǫi|))P[|ǫi| < γ] > (1− ηP )P[|vi| < γ]. (18)

With the threshold γ, we select all the labeled data that satisfy |vi| <
γ to construct the new training data set. All the data with |vi| ≥ γ
are removed from the new training data set.

To formulate the new learning framework, we introduce a diag-

onal (L + j − 1) × (L + j − 1) weighting matrix W. If oi can

have value |oi| much larger than |yi|, it is better to apply hard de-

cision when selecting the training data. Therefore, we use W with

diagonal elements

wi,i =

{
1, if |vi| < γ
0, if |vi| ≥ γ

(19)
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On the other hand, if the value |oi|is mostly comparable to |yi|, then

a soft-decision diagonal matrix W with wi,i = P[|vi| < γ] can also

be used.

With the weighting matrix W, the Algorithm 1 can be easily

changed to use just the new training data set. Specifically, the sparse-

optimization (9) becomes

min
θθθ,oL+j−1

‖W(yL+j−1−oL+j−1−XL+j−1θθθ)‖+λ1‖WoL+j−1‖1.

(20)

The solution (12)(11) can be changed to

ôL+j−1 = arg min
oL+j−1

‖(I−XL+j−1(X
H
L+j−1XL+j−1)

+

×X
H
L+j−1)W(yL+j−1 − oL+j−1)‖+ λ1‖WoL+j−1‖1.

(21)

θ̂θθ(j−1) =
(
X

H
L+j−1XL+j−1

)+

X
H
L+j−1W(yL+j−1−ôL+j−1).

(22)

Note that even though oL+j−1 may not be a sparse vector, WoL+j−1

is sparse. In practical implementations, we can simply remove those

data that are not used from the convex optimization.

In summary, we can modify Algorithm 1 into the following Al-

gorithm 2 which can work with training data that have non-sparse

labeling errors.

Algorithm 2: Linear regression with sparsity recovery

i) Initialize: Determine W based on (17)-(19);

Linear regression with training (yL,XL) (21) (22).

ii) For iteration j = 1, 2, · · · , J , do

1)-4) same as 1)-4) of Algorithm 1, except using (21)(22)

5) Update weight matrix W using training (yL+j ,XL+j).

4. SIMULATIONS

To verify the performance of Algorithm 1 in resolving problems of

insufficient training and sparse labeling errors, we used simulation

settings similar to [8]. We let I = 100, N = 10, θθθ ∼ N (10 ×
1N , IN ), xi ∼ N (0N , IN ), and ǫi ∼ N (0, 1). Human labeling

errors were modeled with Laplacian distribution oi ∼ L(0, 103).
The initial training data set size was L = 15, and an extra J = 10
training data were to be found in active learning.

We compared our new algorithm (Algorithm 1) with four other

algorithms: KeepOut:L which just implemented (3) with L train-

ing data; KeepOut:L+J which implemented (3) with L + J train-

ing data; KeepOut:Active which implemented the active learning

algorithm of [3]; and RmvOut:L which implemented [8] with L
training data. Note that the three KeepOut algorithms did not use

any way to mitigate labeling errors. We evaluated NRMSE (nor-

malized root mean square error) of the regression vector estimation√
E[‖θ̂θθ − θθθ‖2/‖θθθ‖2] over 100 runs of experiments for each label-

ing error probability. The simulation results in Fig. 1 clearly show

the superior performance of our new Algorithm 1 in robust linear

regression.

Next, we evaluated our Algorithm 2 in resolving the problems

of insufficient training and non-sparse human labeling errors. We

set I = 500. While the other algorithms used 10% data for train-

ing, our Algorithm 2 used 15 initial training data and searched for

more extra training data. Human errors were introduced based on

the IRF with appropriate parameters to create various human label-

ing error probabilities. Simulation results in Fig. 2 clearly show that

our algorithm had superior performance because of both using ac-

tive learning to recruit more training data and using the IRT model

to remove those training data with high error probabilities.
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Fig. 1. NRMSE of the estimation of θθθ for sparse labeling errors.
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Fig. 2. NRMSE of the estimation of θθθ for non-sparse human labeling

errors.

5. CONCLUSIONS

In this paper we formulated a joint machine learning and human

learning framework for linear regression so as to enhance the ro-

bustness to insufficient and error training data. Machine learning is

applied to search for more and better training data and to estimate

human labeling errors, while human learning is applied to label the

extra training data. The IRT (item response theory) model of human

errors is applied for removing potentially error-prone data so as to

keep the sparsity of the labeling errors. Simulations are conducted

to verify the performance of the proposed algorithms.
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