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ABSTRACT

In speech emotion recognition (SER), speech data is usually
captured from different scenarios, which often leads to signif-
icant performance degradation due to the inherent mismatch
between training and test set. To cope with this problem, we
propose a domain adaptation method called Sharing Priors be-
tween Related Source and Target classes (SPRST) based on a
two-layer neural network. The classifier parameters, namely
the weights of the second layer, are imposed the common pri-
ors between the related classes, so that the classes with few
labeled data in target domain can borrow knowledge from the
related classes in source domain. The method is evaluated on
the INTERSPEECH 2009 Emotion Challenge two-class task.
Experimental results show that our approach significantly im-
proves the performance when only a small number of target
labeled instances are available.

Index Terms— Domain adaptation, speech emotion
recognition, neural network, priors

1. INTRODUCTION

The problem of automatically predicting the emotional states
in speech emotion recognition has been the subject of increas-
ing attention among the speech community. Many state-of-
the-art speech emotion recognition methods usually assume
that the training and test samples are drawn from the same
distribution. However, in real world applications, the speech
signals obtained from different devices and recording condi-
tions will be typically highly dissimilar in terms of speakers,
spoken languages, type of emotion, acoustic signal conditions
and type of labeling scheme [1]. A classifier just trained on
a specific corpus and then applied directly to another corpus,
cannot be expected to have excellent performance.

One outstanding approach to deal with this problem is
domain adaptation (DA). DA is one special type of transfer
learning problem, in which the source and target data distri-
butions are different, but the source and target tasks remain
the same [2, 3]. Based on whether the target domain data
is partially labeled or completely unlabeled, DA techniques
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are commonly classified into two categories: semi-supervised
DA and unsupervised DA. It has been theoretically shown that
transfer learning can greatly improve the classification perfor-
mance especially when there exist a small number of labeled
samples in the target domain [3, 4]. Here, we mainly address
the situation of semi-supervised DA.

For semi-supervised DA for SER, many approaches are
proposed [5, 6]. However, priors are not considered. In this
paper, we propose a Sharing Priors between Related Source
and Target classes (SPRST) approach based on a two-layer
neural network model. The major contribution of this paper
is: To our best knowledge, this is the first paper introduc-
ing the priors to DA in SER. The classifier parameters can be
derived from the priors. The same prior is imposed on the
classifier parameters of the related source and target classes,
so that the target classes with few samples can borrow knowl-
edge from the source classes.

2. RELATED WORK

Research in SER has increasing drawn attention [7, 8, 9].
Most of these works are based on the condition that the train-
ing and test set come from the same corpus. This assump-
tion doesn’t hold in many real world applications and the per-
formance will degrade due to the inherent dissimilarities be-
tween the training and test set.

Transfer learning has been proposed to transfer useful in-
formation from one source domain to a related target domain
and can solve this problem effectively [4]. Meanwhile, deep
neutral network has recently achieved state-of-the-art perfor-
mance on a number of machine learning tasks [10]. The suc-
cess of deep learning mainly contributes to the ability of lay-
erwise unsupervised pre-training and extracting abstract hier-
archical non-linear features of the input [11, 12, 13]. Deep
neural networks have shown to suit well to the transfer learn-
ing [14]. Deng et al. [5] have presented a sparse autoencoder-
based feature transfer learning method, in which a common
emotion-specific mapping rule is learnt from a small set of tar-
get labeled data and then the source data reconstructed by this
mapping are used to train a classifier. Schuller et al. [15] pro-
pose a shared-hidden-layer autoencoder (SHLA) approach to
learn common feature representations shared across the train-
ing and test set. Also, Deng et al. [16] have introduced an
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Fig. 1: Overview of SPRST model. (a) Schematic showing the unsupervised pre-training with SHLA method. (b) A two layer
neural network (the parameters of first layer initialized with the weights learned by SHLA method) with priors sharing over the
classification parameters of related classes.

adaptive denoising autoencoder method where prior knowl-
edge learned from a target set is used to regularize the train-
ing on a source set. Srivastava et al. [17] have improved
the classification performance for the classes with few train-
ing examples by discovering similar classes and transferring
knowledge among them.

In [17], tree-based priors are introduced. This interesting
work gives us new insight about DA in SER. In this paper,
we impose priors on the classifier parameters of the related
source and target classes. Different from [17], here the relat-
ed classes are drawn from different domains. In our two-layer
neural network model, we first pre-train the weights of the
first layer combining the source and target unlabeled samples
as input. This makes the distribution induced by the source
samples as similar as possible as the distribution of target
samples. Then we impose common priors on the classifier
parameters of the related source and target classes, and use
the labeled data to train the network.

3. PROPOSED METHODOLOGY

The structure of SPRST model is shown in Fig. 1. It in-
volves two stages: 1) unsupervised pre-training using SHLA;
2) sharing priors between the related classes.

3.1. Unsupervised Pre-training

We employ the SHLA method for unsupervised pre-training.
The process is shown in Fig. 1(a). Given the source domain
samples Xs, and the target domain samples Xt, the two ob-
jective functions, similar to that of autoencoder, are defined
as follows:

Ls(θs) =
∑
x∈Xs

∥x− x̃∥2, (1)

Lt(θt) =
∑
x∈Xt

∥x− x̃∥2, (2)

where x̃ is the reconstruction of x, and the parameters θs =
{W1, b1,W2

s, b2
s}, and θt =

{
W1, b1,W2

t, b2
t
}

share the
same parameters {W1, b1}. The overall objective function is:

LSHLA(θSHLA) = Ls(θs) + γLt(θt), (3)

where θSHLA =
{
W1, b1,W2

s, b2
s,W2

t, b2
t
}

are the pa-
rameters to be optimized during training, and the hyper-
parameter γ weighs the contribution of two terms.

3.2. Sharing Priors

Assume XL = {x1, x2, ..., xN} are the labeled exam-
ples drawn from the source and target domains and Y =
{y1, y2, ..., yN} are the corresponding labels, where each la-
bel yi is a K dimensional vector of targets. Our model is a
two-layer neural network (see Fig. 1(b)). Let w denote the
parameters (weights and biases) of the first layer, and w is ini-
tialized with (W1, b1) in section 3.1. Parameter β ∈ RD×K

denotes the second layer weights (βk ∈ RD representing
the classifier parameters for class k). Here D represents the
number of the hidden units, and K is the number of classes.

Generally speaking, the classifier parameters for one class
are independent of that of all other classes. It does work
well for most applications when large plenty of labeled ex-
amples per class are available. However, in semi-supervised
DA, there exist only a small number of labeled examples in
target domain. For a two-class problem, we consider that the
source positive (SP) class and the target positive (TP) class
are related, the same as the source negative (SN) and target
negative (TN). The related classes share a common prior over
their classifier parameters. For example, SP and TP share a
common prior, so that TP with few labeled data can borrow
knowledge from SP.

Assume that each class k is associated with a weight vec-
tor βk ∈ RD, and βk can be derived from a prior vector
θs ∈ RD. We define the following generative model for β:

θs ∼ N(0,
1

λ1
ID), βk ∼ N(θparent(k),

1

λ2
ID), (4)
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Table 1: Emotion categories mapping onto negative and pos-
itive valence for three databases.

Corpus Negative Positive
FAU AEC angry, touchy, emphat-

ic, reprimanding
motherese, neutral,
joyful, rest

ABC aggressive, intoxicat-
ed, nervous, tired

cheerful, neutral,
rest

Emo-DB anger, boredom, dis-
gust, fear, sadness

joy, neutral

where λ1 and λ2 are hyper-parameters, ID is identity matrix
of size D × D, and θparent(k) denotes the θ that βk derives
from. In this paper, we denote two priors θP and θN . For
related classes, they share the same prior. So βSP and βTP

are derived from θP , and βSN and βTN are derived from θN .
This is shown is Fig. 1(b). More formally, we wish to mini-
mize the following loss function:

L(w, β, θ) = − logP (Y|X , w, β)− logP (w)− logP (θ)

− logP (β|θ)

= − 1

N


N∑
i=1

K∑
k=1

1{y(i) = k}log eβ
T
k fw(x(i))

K∑
j=1

eβ
T
j fw(x(i))


+

λ2

2
∥w∥2 + λ1

2
∥θ∥2

+
λ2

2

K∑
k=1

∥∥βk − θparent(k)
∥∥2,

(5)

where logP (Y|X , w, β) is the log-likelihood function and
the other terms are priors over the model’s parameters. 1{·} is
the indicator function, 1{a true statement} = 1, and 1{a false
statement} = 0. fw(x(i)) = s(wx(i)) represents the hidden
features, and s is the sigmoid activation function. The choice
of normal distributions in Eq.4 leads to a nice property that
maximization over θ, given β can be done in closed form. It
just amounts to taking a scaled averaged of all βk’s which are
derived from θs. Let Ns = {k|parent(k) = s}, then

θs
∗ =

1

|Ns|+ λ1/λ2

∑
k∈Ns

βk. (6)

Therefore, the loss function in Eq.5 can be optimized by itera-
tively performing the following two steps. First, we maximize
over w and β keeping θ fixed by using standard stochastic
gradient descent (SGD). Then, we maximize over θ keeping
β fixed using Eq.6.

4. DATABASE

To evaluate the effectiveness of our method, we consider the
INTERSPEECH 2009 Emotion Challenge (EC) two-class

Table 2: Overview of the standardised feature set provided
by the INTERSPEECH 2009 EC.

LLDs (16× 2) Functionals (12)
(∆) ZCR mean
(∆) RMS Energy standard deviation
(∆) F0 kurtosis, skewness
(∆) HNR extremes: value, rel, position, range
(∆) MFCC 1-12 linear regression: offset, slope, mean

square error

task [18]. It is based on the FAU Aibo Emotion Corpus (FAU
AEC), which is a spontaneous corpus that contains 9 hours
of German speech of 51 children interacting with Sony’s pet
robot Aibo at two different schools, Ohm and Mont. We treat
FAU AEC as target domain database. The data of school
Ohm is used for target training, the data of Mont for target
testing.

Additionally, for the source set we choose two publicly
available databases, namely the database of German emotion-
al speech (Emo-DB) [19], and the Airplane Behavior Corpus
(ABC) [20]. They are highly different from the target set FAU
AEC in terms of age, type of emotion and recording situation,
and degree of spontaneity. For comparability with FAU AEC,
we have to map the diverse emotion classes onto the valence
axis of the dimensional emotion model. The mapping strategy
is shown in Table 1 according to [1, 15].

4.1. Acoustic Features

We keep in line with the INTERSPEECH 2009 EC [18] and
use a baseline feature set which consists of 12 functionals ap-
plied to 2 × 16 acoustic Low-Level Descriptors (LLDs) in-
cluding their first order delta regression coefficients as shown
in Table 2. Therefore, the feature vector per chunk contains
16 × 2 × 12 = 384 attributes. To ensure reproducibility, the
open source toolkit openEAR [21] is utilized to extract 384
attributes.

5. EXPERIMENTS

5.1. Experimental Setup

For the first stage of our model, we choose the source set
(ABC or Emo-DB), and the target training set Ohm to perform
unsupervised pre-training. For the second stage, a small part
of labeled examples (the size ranging from 10 to 1000 chunks)
are randomly chosen from the target training set Ohm, where
the same number of instances are chosen from positive va-
lence and negative valence. These selected target labeled in-
stances, together with the source labeled instances, are used
to train the network. Then, the source set and parts of the
labeled examples in Ohm set (10 instances) are selected as a
validation set to select parameters. Finally, the target test set
Mont is fed into the network for classification.
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For parameters selection, the number of hidden unit-
s is fixed to 200, and attempted hyper-parameters γ, λ1

and λ2 are the following: γ ∈ {0.1, 0.5, 1, 2, 3}, λ1, λ2 ∈
{0.1, 0.5, 1, 3, 5}. For performance evaluation, we choose
unweighted average recall (UAR), namely the mean accuracy
over the accuracy of each class. The reported performance in
UAR is the average over 20 runs to avoid ’lucky’ or ’unlucky’
selection.

5.2. Methods for Comparison

To evaluate the effectiveness of approach, we compare the
following methods with the same initialized parameters for
the first layer:

• Matched Training (MT): randomly picks a number of
instances from the target training set Ohm to train the
network , without using the source set.

• Cross Training (CT): only uses the source set ABC or
Emo-DB to train the network.

• NPRST: uses the source set and a number of instances
from target training set Ohm to train the network , with-
out sharing priors.

• SPRST: uses the source set and a number of instances
from target training set Ohm to train the network , with
sharing priors.

5.3. Results

Fig. 2(a) and (b) report the results of the source set being
ABC and Emo-DB respectively. Our approach achieves high-
er performance when only a small number of target labeled
instances are available. Specifically, for the ABC, the SPRST
achieves the highest UAR when the number of chosen target
labeled instances is in the range of 10 to 300. Afterwards,
when the size of target labeled instances continues increas-
ing, the performance of MT gradually overtakes the SPRST
since no more extra information in the ABC can be transferred
to the target domain. For the source set being Emo-DB, the
SPRST performs better within the range of target size rang-
ing from 10 to 300. Afterwards, the performance of SPRST
is still comparable with the MT.

Table 3 shows the UAR comparisons for each method
when only a small number of labeled instances are available in
the target domain, e.g. only 10 instances. As we can see, MT
can only achieve a chance level UAR. The SPRST method
outperforms the NPRST, which means that the priors shared
between the related source and target classes do work for the
classification in the speech emotion recognition.
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Fig. 2: UAR comparison for the increase of number of in-
stances chosen from the FAU training set Ohm for the source
set being ABC and Emo-DB. CT:# is the UAR if only using
source set.

Table 3: UAR comparison when only 10 labeled instances
are chosen from the target training set.

UAR (%) MT NPRST SPRST
ABC 50.69 60.33 61.54

Emo DB 51.68 56.65 57.58

6. CONCLUSION

In this paper, we proposed a Sharing Priors between Related
Source and Target classes (SPRST) approach based on a two-
layer neural network model. We first pre-train the weights
of the first layer. Then we impose the common priors on the
classifier parameters of the related source and target class-
es so that the target classes with few labeled data can borrow
knowledge from the source classes. Experimental results with
two publicly available corpus show that the proposed method
can effectively transfer knowledge and enhance the classifica-
tion performance.

Further work includes extending the single-architecture to
a deep architecture in order to further find the useful informa-
tion in emotional features.
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