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Abstract— Despite of its wide success in many distributed
statistical learning applications, the well-known Gaussian belief
propagation (BP) algorithm still lacks sufficient understanding
at the theoretical level. This paper studies the convergence
of Gaussian BP by analyzing the dynamic behaviour of the
marginal covariances. We show, under a mild technical as-
sumption, that the information matrices (i.e., the inverses of
marginal covariances) are guaranteed to converge exponentially
to positive-definite matrices. The convergence rate is explicitly
characterized. This result is a key step to the understanding of
the dynamic behaviour of the BP iterations.
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I. INTRODUCTION

Pearl’s Belief Propagation, or Belief Propagation (BP) for
short, is a well-celebrated algorithm for solving distributed
optimization problems. Originally proposed by Pearl [1] in
1982, BP (also known as sum-product message passing), is
a message passing algorithm for computing marginal PDFs
on Bayesian networks (directed and acyclic graphs) and
Markov random fields (undirected and cyclic graphs). Since
its introduction, BP has been widely accepted as a powerful
distributed algorithm in many scientific and engineering
fields, including artificial intelligence, information theory, ap-
plied mathematics, signal processing and control systems [2].
Renowned applications of BP include low-density parity-
check codes and turbo codes for digital communications [3]–
[5], free energy approximation for statistical learning [2],
combinatorial optimization [6] and computer vision [7], [8].

For acycilc graphs (i.e., graphs without loops), it is known
that BP converges in a finite number of iterations, and the
correct marginals will be produced [1]. For cyclic graphs
(i.e., graphs with loops), BP is not guaranteed to converge
in general, and even if it does, it does not calculate the
correct marginals. Nevertheless, the wonderful and myste-
rious feature of BP is that for most applications, BP delivers
amazingly good approximations for the marginals, despite
the existence of loops [9]–[11].

Gaussian BP is the BP algorithm specialized to Gaussian
distributions. The algorithm computes iteratively the mean
and variance (or covariance) of each marginal. Gaussian BP
has been successfully applied in low complexity detection
and estimation problems arising in communication systems,
state estimation for large-scale linear system, sparse Bayesian
learning, estimation in Gaussian graphical model, distributed
beam forming, inter-cell interference mitigation, distributed

synchronization and localization in wireless sensor networks,
distributed energy efficient self-deployment in mobile sensor
networks, distributed rate control in Ad Hoc networks, dis-
tributed network utility maximization, and large-scale sparse
Bayesian learning [12]–[14].

BP’s excellent performances have inspired many re-
searchers over the last 20 years to study its theoretical proper-
ties. The fundamental questions are: 1) For a cyclic network
graph, under what conditions will BP iterations converge?
2) Upon convergence, how accurate are the approximate
marginals? Viewing BP iterations as a dynamic process, these
questions amount to its stability and performance analysis.
For a general cyclic graph, [15]–[19] studied the convergence
condition for BP and [16], [19], [20] worked on the accuracy
analysis. However, these references only give partial answers,
and the conditions given in these references are mainly ap-
plicable to discrete random variables only. Several conditions
ensuring the convergence of the marginals under a designated
initialization set have been proposed [21]–[25]. But several
major drawbacks exist. Firstly, Convergence conditions are
too difficult to check. For example, [24] requires to run a
semi-definite programming (SDP) to check if the variances
offered by BP converge. The convergence condition for the
mean in [25] requires the evaluation of the spectral radius
of an infinite dimensional matrix, which is impossible in
practice. Secondly, the convergence analysis is done only
for scalar systems (i.e., the state of each node is a scalar1).
Finally, although [21] discusses the accuracy of BP for vector
systems, estimation errors are not quantified.

This paper aims at taking the first step towards answering
the above questions. More specifically, we study the conver-
gence of the information matrices (the inverse of the marginal
covariance matrices) of the Gaussian BP iterations under the
general setting of a cyclic graph and vector system (i.e.,
each node has a random vector). Our study is conducted
through the problem of distributed state estimation for a
networked linear system with additive Gaussian noises, using
the weighted least-squares (WLS) criterion. It turns out that
Gaussian BP can be described through this setting, and this
equivalence gives strong motivation about applying Gaussian
BP in distributed state estimation. Viewing BP iterations as
a dynamic process for the marginal mean and error covari-

1Since the state components for each node are not independent for a
vector system, results for scalar systems are not applicable to vector systems.
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ance for each node, we show that, under a mild technical
condition, the information matrices always converge and
their steady state are bounded from both below and above.
Moreover, we show that the convergence rate to the steady
state is exponential and this rate is explicitly characterized.

II. PROBLEM FORMULATION

A. The general BP algorithm

The BP algorithm is concerned with a system represented
by a bipartite graph with I variable nodes and V fac-
tor nodes, as depicted in Fig. 1. Each variable node i is
associated with a random variable xi ∈ Rni and each
factor node v is connected to a subset of variable nodes,
Fv ⊂ {1, 2, . . . , I}. Denoting the joint (or global) variable
by X = {xi : i = 1, 2, . . . , I}, it is assumed that its joint
PDF f(X) can be expressed in a factor form:

f(X) =
V∏

v=1

fv (Xv) ,

where Xv = {xi : i ∈ Fv}, v = 1, 2, . . . , V . Each fv(Xv)
represents a piece of partial “knowledge” about X .

1

1,2 2,31,3

2 3

Fig. 1. Bipartite graph: circles = variable nodes; squares = factor nodes

The goal of BP is to compute, at each node i, the marginal
gi(xi) of f(X), which is defined by

gi(xi) =

∫
f(X)d(X \ xi), (1)

where X \ xi is the set obtained from X by removing
xi. The algorithm resorts to iterative computation and local
communication between connected variable nodes and factor
nodes. More specifically, the algorithm starts by each factor
node v sending to each variable node i ∈ Fv the following
marginal pdf (called message)

m
(0)
v→i(xi) =

∫
fv(Xv)d(Xv \ xi). (2)

Then, at each iteration k = 1, 2, . . ., each variable node i
sends to be every connected factor node v the following
message:

m
(k)
i→v(xi) =

∏
w∈Ni\v

m
(k)
w→i(xi), (3)

where Ni is the set of factor nodes connected to node
i. Similarly, each factor node v sends to every connected
variable node i the following message:

m
(k)
v→i(xi) =

∫
fv(Xv)

∏
j∈Fv\i

m
(k−1)
j→v (xj)d(Xv \ xi). (4)

The desired marginal at node i and iteration N is estimated:

g
(N)
i (xi) =

∏
w∈Ni

m
(N)
w→i(xi), (5)

modulo a constant scalar to make its integral equal 1.

B. Gaussian BP and Distributed WLS Estimation

Gaussian BP refers to the special but extremely important
case of BP where the functions fv(Xv) are Gaussian distri-
butions. Following the tradition in the Gaussian BP literature
[18], [19], [21], [24], [25], each factor node v is assumed to
be connected to either one or two variable nodes, i.e, each
Fv contains at most two elements2.

The significance of Gaussian BP lies in its connection
with distributed WLS estimation. Consider a system with
I unknown variables x1, x2, . . . , xI . Associated with the
system are two kinds of measurements, the so-called self
measurement for node i,

zi = Cixi + wi, (6)

and (pair-wise) Joint measurement between nodes i and j,

zi,j = Ci,jxi + Cj,ixj + wi,j . (7)

In the above, the matrices Ci, Ci,j and Cj,i are known; wi

and wi,j are independent measurement noises with zero-
mean Gaussian variables with known covariances Ri > 0
and Ri,j > 0, respectively. Note that 1) the factor node
(i, j) is unordered, i.e., (i, j) = (j, i); 2) zi,j = zj,i and
wi,j = wj,i; 3) It is not necessary for all variable nodes
to have self measurements or all variable node pairs to have
joint measurements. In fact, joint measurements are typically
sparse for large graphs.

The problem of distributed WLS estimation is to compute
the maximum likelihood (ML) estimate for each xi and
the corresponding estimation error covariance using a fully
distributed algorithm. It is clear that the likelihood functions
given by the self and joint measurements are, respectively,

fi(xi) = p (zi|xi) ∼ N (zi − Cixi, Ri), (8)
fi,j(xi, xj) = p (zi,j |xi, xj)

∼ N (zi,j − Ci,jxi − Cj,ixj , Rij), (9)

where N (µ,Σ) stands for a Gaussian PDF with mean µ and
covariance Σ. The joint likelihood function for X becomes

f(X) =
∏
i

fi(xi)
∏
(i,j)

fi,j(xi, xj). (10)

Therefore, the maximum likelihood function for each xi is
given by (1), which is exactly the task of BP.

Returning to the BP iterations (2)-(4), it is straightforward
to see that, at each iteration k, a factor node with a single
variable node i will not get any update and will always send
the same message fi(xi) to node xi. Hence, we can remove
these factor nodes from the iterations (3)-(4), and directly add

2It suffices to consider this type of graphs because any Bayesian network
can be converted into an undirected graph with pairwise cliques by adding
cluster nodes for all parent nodes that share a common child; see [21].

2600



the factor fi(xi) into (4). Subsequently, the iterations (3)-(4)
can be rewritten as

m
(0)
i,j→i(xi) =

∫
p (zi,j |xi, xj) dxj (11)

m
(k)
i→i,j (xi) = p (zi|xi)

∏
w∈Ni\j

m
(k)
i,w→i (xi) , (12)

m
(k)
i,j→i (xi) =

∫
p (zi,j |xi, xj)m(k−1)

j→i,j (xj) dxj . (13)

Also, the marginal estimate (5) at iteration N becomes

g
(N)
i (xi) = p (zi|xi)

∏
k∈Ni

m
(N)
i,k→i (xi)

∼ N (x̂i(N),Σi(N)) (14)

for some mean x̂i(N) and covariance Σi(N).
Defining the information vector and information matrix:

αi(N) = Qi(N)x̂i(N); Qi(N) = Σ−1i (N), (15)

which we call information parameters collectively, it is
clear that they will fully characterize the marginal estimate
g
(N)
i (xi). Similarly, mi,j→i (xi) and mi→i,j (xi) are also

Gaussian distributed, thus they can also be fully character-
ized by their information parameters αi,j→i(N), Qi,j→i(N),
αi→i,j(N) and Qi→i,j(N). Using this representation, the
recursions (12)-(13) can be implemented by updating the
information parameters, which is done by Algorithm 1.

Denote Ωi,j = Qi→i,j(1), i = 1, 2, . . . , I and j ∈ Ni, for
simplicity. It is easy to verify that

Ωi,j = CT
i R
−1
i Ci +

∑
w∈Ni\j

CT
i,wR

−1
i,wCi,w.

It follows that Ωi,j > 0, for every (i, j), is needed for
Algorithm 1. Throughout this paper, we will make the
following slightly stronger assumption than the above.

Assumption 1: For all i = 1, 2, . . . , I and j ∈ Ni,

Ωi,j = CT
i R
−1
i Ci +

∑
w∈Ni\j

CT
i,wR

−1
i,wCi,w > CT

i,jR
−1
i.j Ci,j .

Remark 1: Roughly speaking, (1) means that, for each
node i, the information contribution from any single neigh-
bouring node j (i.e., CT

i,jR
−1
i,j Ci,j) is strictly smaller than

that from node i (i.e., CT
i R
−1
i Ci) and all other neighbouring

nodes w (i.e., CT
i,wR

−1
i,wCi,w).

C. Problem Statement

The canonical graph G has a node associated with each
variable node i = 1, . . . , I . Also, nodes i and j are connected
by an edge if there exists a factor node (i, j), i.e., j ∈ Ni.
It is assumed throughout the paper that G is a connected
undirected graph.

It is well known that BP (thus Gaussian BP) converges to
the correct marginals in a finite number of iterations when
G is acyclic [1]. The fundamental challenge in the study of
BP is to understand how the algorithm performs for cyclic
graphs. As mentioned in Section I, the goal of this paper is
to provide conditions to guarantee the convergence of the
marginal covariances in Gaussian BP iterations when the
induced bipartite graph is cyclic.

Algorithm 1 Gaussian BP for Distributed WLS Estimation
1) Initialization: At time k = 0, factor node (i, j) sends
to each connected variable node i:

αi,j→i(0) = CT
i,jR

−1
i,j zi,j , (16)

(17)

Qi,j→i(0) = CT
i,jR

−1
i,j Ci,j . (18)

2) Main loop: At time k = 1, 2, · · · , do:
2.1) Each variable node i computes

αi(k) = CT
i R
−1
i zi +

∑
j∈Ni

αi,j→i(k − 1),

Qi(k) = CT
i R
−1
i Ci +

∑
j∈Ni

Qi,j→i(k − 1), (19)

and (if required at this iteration)

x̂i(k) = Q−1i (k)αi(k), (20)

Σi(k) = Q−1i (k).

2.2) Each variable node i sends to factor node (i, j) with
j ∈ Ni:

αi→i,j(k) = αi(k)− αi,j→i(k − 1),

Qi→i,j(k) = Qi(k)−Qi,j→i(k − 1), (21)

2.3) Each factor node (i, j) sends to each connected
variable node j:

αi,j→j(k) = CT
j,iR

−1
i,j→j(k)zi,j→j(k),

Qi,j→j(k) = CT
j,iR

−1
i,j→j(k)Cj,i, (22)

where

zi,j→j(k) = zi,j − Ci,jQ
−1
i→i,j(k)αi→i,j(k),

Ri,j→j(k) = Ri,j + Ci,jQ
−1
i→i,j(k)CT

i,j . (23)

III. CONVERGENCE OF INFORMATION MATRICES

In this section, we provide our main result which shows
that the information matrices Qi(k) always converge expo-
nentially to a positive definite matrix, under Assumption 1.
The rate of convergence is also characterized. This result is
fundamental, not only on its own, but also for carrying out
further analysis on the convergence of the BP estimates.

To derive the main result, we will first provide two
lemmas. The first lemma characterises the monotonicity
properties for Qi→i,j(k), Qi,j→j(k) and Ri,j→j(k). The
second lemma states the boundedness of Ri,j→j(k) and
positive definiteness of Qi→i,j(k) at steady state. These
results then lead to the first theorem which characterizes the
exponential convergence of Qi→i,j(k). This will then lead
to the second theorem (our main result), which characterizes
the exponential convergence of Qi(k).

Lemma 1: . The following monotonicity properties hold
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for Gaussian BP: For any k ∈ N, 1 ≤ i ≤ I and j ∈ Ni,

Qi→i,j(k + 1) ≤ Qi→i,j(k);

Qi,j→j(k + 1) ≤ Qi,j→j(k);

Ri,j→j(k + 1) ≥ Ri,j→j(k). (24)

In particular, Qi→i,j(k) ≤ Ωi,j for all k ≥ 1.
Lemma 2: The following limits hold for Gaussian BP

under Assumption 1: For every 1 ≤ i ≤ I and j ∈ Ni,
we have

Qi→i,j(∞) = lim
k→∞

Qi→i,j(k) > 0;

Ri,j→j(∞) = lim
k→∞

Ri,j→j(k) <∞.
Next, we give the main result on convergence. Define

∆Qi→i,j(k) = Q
−1/2
i→i,j(∞)Qi→i,j(k)Q

−1/2
i→i,j(∞)− I;

∆Qi,j→j(k) = Q
−1/2
i,j→j(∞)Qi,j→j(k)Q

−1/2
i,j→j(∞)− I;

∆Ri,j→j(k) = R
−1/2
i,j→j(∞)Ri,j→j(k)R

−1/2
i,j→j(∞)− I.

Also, let constants ρ > 0 and α > 0 be defined as follows:

ρ = max
i,j
‖R−1/2i,j→j(∞)Ci,jQ

−1
i→i,j(∞)CT

i,jR
−1/2
i,j→j(∞)‖,

(25)

α = max
i,j
‖Q−1/2i→i,j(∞)Ωi,jQ

−1/2
i→i,j(∞)− I‖. (26)

Note that ρ < 1 follows from Ri,j > 0 and

Ri,j→j(∞) = Ri,j + Ci,jQ
−1
i→i,j(∞)CT

i,j .

Theorem 1: Suppose Gaussian BP is applied under As-
sumption 1. Then, we have, for every node i, its connecting
node j and all k ∈ N, we have

0 ≤ ∆Qi→i,j(k) ≤ αρk−1I. (27)
Since ultimately we are only interested in the information

matrices Qi(k), we get the following result from Theorem 1.
Theorem 2: Under Assumption 1, it holds that Qi(k) →

Qi(∞) > 0, as k →∞, for every node i of G and all k ∈ N .
Moreover, by defining

∆Qi(k) = Q
−1/2
i (∞)Qi(k)Q

−1/2
i (∞)− I,

it holds, for very node i of G and all k ∈ N , that

0 ≤ ∆Qi(k) ≤ αρk−1I. (28)
Remark 2: The above result shows that the information

matrices converge to their steady state exponentially. It
is straightforward to see that their inverses, i.e., marginal
covariances, will enjoy the same property. The details are
not provided due to space limit.

IV. CONCLUSION

In this paper, we have studied the dynamic behaviour of
the Gaussian BP iterations through the convergence analysis
of the information matrices. We believe that our result is a
crucial for the full understanding of the dynamic behaviour
of Gaussian BP iterations. In particular, this result will
be fundamental for studying the convergence of the BP
estimates and their accuracies, which will be our next task.
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