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ABSTRACT

In this paper, we extend previously developed non-parametric
bounds on the Bayes risk in binary classification problems to multi-
class problems. In comparison with the well-known Bhattacharyya
bound which is typically calculated by employing parametric as-
sumptions, the bounds proposed in this paper are directly estimable
from data, provably tighter, and more robust to different types of
data. We verify the tightness and validity of this bound using an
illustrative synthetic example, and further demonstrate its value by
incorporating it into a feature selection algorithm which we ap-
ply to the real-world problem of distinguishing between different
neuro-motor disorders based on sentence-level speech data.

Index Terms— Bayes error rate, multi-class classification, di-
vergence measures, non-parametric estimator

1. INTRODUCTION

Supervised classification problems are based on the task of form-
ing an approximate definition of an unknown labeling function φ(x)
from a given sample of training data of the form {xi, φ(xi)} [1].
Problems in which φ(x) ∈ {0, 1} are referred to as binary classifi-
cation problems and problems in which φ(x) ∈ {1, 2, ...k} are re-
ferred to as multi-class or k-class problems. Because binary classifi-
cation problems are easier to solve, they have formed the test-bed for
the development of most machine learning algorithms, while most
multi-class approaches are extensions or generalizations of these bi-
nary solutions. In this manner a number of machine learning algo-
rithms such as support vector machines [2][3], Neural Networks [4],
and decision trees [5] have been generalized to multi-class problems.

An important aspect in the design of any predictive system, is the
evaluation of its performance. Often, rather than comparing against
a set of alternative classifiers, it would be preferable to compare a-
gainst the optimal error rate. In the Bayesian setting when there exist
known prior probabilities for each class, this can be represented by
the Bayes Error Rate (BER) or Bayes Risk. If we consider two class
distributions f0(x) and f1(x) in domain x ∈ Rd with prior proba-
bilities p ∈ [0, 1] and q = 1− p respectively, the Bayes Risk can be
defined as

Pe01 =

∫
x

min{pf0(x), qf1(x)}dx. (1)

This represents the error achieved by a classifier assigning a vector x
the class with the highest posterior probability, and is the minimum
error rate that can be achieved by any classifier.

The primary focus of this paper is to propose approaches for
empirically estimating bounds on Bayes error in multi-class prob-
lems. In particular, we seek to extend non-parametric bounds on the
Bayes error that can be calculated using the Dp divergence measure
[6]. In order to achieve this, we utilize the principles behind the
frameworks proposed in [7, 8] and apply them to the Dp divergence
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bound introduced in [9]. In a simulation based on synthetic data we
compare these bounds to parametric and non-parametric estimates of
multi-class bounds based on the Bhattacharyya coefficient (BC).We
further examine the efficacy of these bounds in comparison to para-
metric bounds based on the Bhattacharyya distance by incorporat-
ing each into a feature selection (FS) algorithm. Previous work has
shown that multi-class error bounds can be highly effective tool for
dimensionality reduction [10, 11]. We apply each algorithm to the
problem of discriminating between different neuro-motor disorders
based on sentence-level speech data and compare the performance
of classifiers constructed on each resulting subset of features.

2. BINARY CLASSIFICATION BOUNDS BASED ON THE
DP DIVERGENCE

Consider two class distributions f0(x) and f1(x) with prior proba-
bilities p ∈ [0, 1] and q = 1 − p respectively. The Dp-divergence
can be expressed as

Dp(f0, f1) =
1

4pq

[∫
(pf0(x)− qf1(x))2

pf0(x) + qf1(x)
dx− (p− q)2

]
.

(2)
This divergence measure was first introduced in [6], and can be di-
rectly estimated without estimation of f0(x) and f1(x) using an ex-
tension of the Friedman-Rafsky multivariate two sample test statistic
[12]. The Dp-divergence has been used to estimate the Fisher infor-
mation [6] as well as bounds on the BER and domain adaptation
error for binary classification problems [9, 13]. In [9] it was shown
that the BER for class distributions f0(x) and f1(x) can be bounded
by

1

2
− 1

2

√
up(f0, f1) ≤ Pe01 ≤

1

2
− 1

2
up(f0, f1), (3)

where
up(f0, f1) =

∫
(pf0(x)− qf1(x))2

pf0(x) + qf1(x)
dx

= 4pqDp(f0, f1) + (p− q)2.
(4)

Here up is introduced for convenience, and is equivalent to Dp
when p = q = 1

2
. These bounds have the nice properties of being

non-parametric, empirically estimable, and provably tighter than the
commonly used Bhattacharyya bounds [9].

3. EXTENDING BOUNDS TO MULTI-CLASS PROBLEMS

In this section we describe two multi-class extensions for the bounds
introduced in Section 2: the first is a closed-form extension motivat-
ed by [7] and the second is a recursive multi-class extension based
on the work in [8].

3.1. Closed-Form Extension

Consider anM -class problem with prior probabilities p1, ..., pM and
conditional class distributions f1(x), ..., fM (x) in hypothesis space
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x. We first consider extending the bounds using the approach de-
scribed in [7]. In this paper, the authors show that the BER in multi-
class (RM ) problems can be bounded by

2

M

M−1∑
i=1

M∑
j=i+1

(pi + pj)Peij ≤ RM ≤
M−1∑
i=1

M∑
j=i+1

(pi + pj)Peij

(5)
where Peij represents the pairwise Bayes risk of the 2-class sub-
problem of classifying between classes i and j. Substituting in the
upper and lower bounds on the Bayes Risk defined in [9] yields

2

M

M−1∑
i=1

M∑
j=i+1

(pi + pj)

[
1

2
− 1

2

√
u
p̃
i,j
i

(fi(x), fj(x))

]

≤ RM ≤
M−1∑
i=1

M∑
j=i+1

(pi + pj)

[
1

2
− 1

2
u
p̃
i,j
i

(fi(x), fj(x))

] (6)

where p̃i,ji represents the normalized prior probability for class i de-
fined by

p̃i,ji =
pi

pi + pj
. (7)

One limitation of this approach is that the upper bound becomes very
loose when the overlap between class distributions is large. In fact,
for completely overlapping distributions, the upper bound will con-
verge to (M − 1)/2 while the true BER converges to (M − 1)/M .
Section 3.2 will introduce an alternative that remedies this shortcom-
ing.

3.2. Recursive Extension

Next we consider an expression introduced by Garber and Djouadi
that represent bounds on the Bayes risk in terms of the Bayes risk
of the M (M − 1)-class subproblems created by removing different
classes as

M − 1

(M − 2)M

M∑
i=1

(1− pi)RM−1
i ≤ RM ≤

min
α∈{0,1}

1

M − 2α

M∑
i=1

(1− pi)RM−1
i +

1− α
M − 2α

(8)

Here RM−1
i represents the Bayes risk for the (M − 1)-class sub-

problem created by removing class i and α is an optimization con-
stant that is minimized on-line in order to form the tightest possible
bound. By using these upper and lower bounds in a recursive man-
ner we can attain upper and lower bounds for the multi-class BER in
terms of the pairwise Bayes risks between conditional class distribu-
tions. As in the first extension, we can bound each pairwise BER in
terms of the Dp-divergence using (3). For example let us consider
the 3-class case, we can compute the upper bound as

R3 ≤ min
α∈{0,1}

1

3− 2α

3∑
i=1

(1− pi)R2
i +

1− α
3− 2α

. (9)

Substituting in the bounds expressed in (3) yields

R3 ≤ min
α∈{0,1}

1

3− 2α

{
(p1 + p2)

[1

2
− 1

2
u
p̃
1,2
1

(f1, f2)
]

+ (p1 + p3)
[1

2
− 1

2
u
p̃
1,3
1

(f1, f3)
]

+ (p2 + p3)
[1

2
− 1

2
u
p̃
2,3
2

(f2, f3)
]}

+
1− α
3− 2α

(10)

(a) Unimodal Scenario (b) Bimodal Scenario

Fig. 1: Illustration of distribution placement for generating the syn-
thetic data.

To better understand the role that α plays in this calculation, let us
consider the two extreme cases in which the three class distributions
are either completely overlapping or completely separable, and all
class distributions have equal priors p1 = p2 = p3 = 1

3
. In the first

case, R2
1 = R2

2 = R2
3 = 1

2
and α = 0 yields the tightest bound of

R3 ≤ 2
3

while α = 1 yields the loosest bound of R3 ≤ 1. In the
second case R2

1 = R2
2 = R2

3 = 0, α = 0 yields the loosest bound
of R3 ≤ 1

3
while α = 1 yields the tightest bound of R3 ≤ 0. In

general the value of α will depend on the total of the summation in
(8). When this summation is greater than (M − 2)/2 then α = 0,
otherwise α = 1.

3.3. Comparison of Bounds

Because the two bounds are equivalent when α = 1, Garber was
able to show that for problems with equal priors the recursive exten-
sion is guaranteed to be at least as tight as the closed-form extension
[8]. Extended proofs in Section 6 shows both the upper and lower
recursive bounds will be at least as tight as the closed-form bound-
s regardless of priors. The price for this superiority comes in the
increased computational burden. The computational burden of the
closed-form bound can be approximated by M(M − 1)γ(nc)/2,
where γ(nc) represents the number of computations required for a
single pairwise risk function between classes containing nc samples.
In addition to these computations, the recursive bound requires cal-
culation of (8) for all

∑M−1
i=3

(
M
i

)
unique subproblems of 3 or more

classes. While these additional computations are inconsequential for
small M , their rapid growth w.r.t. M makes this method infeasible
for problems containing a large number of classes (M > 30).

4. RESULTS

This section is divided into two parts. Section 4.1 presents an illus-
trative example with synthetic data in which several class distribu-
tions are represented by either unimodal or bimodal Gaussian distri-
butions. The unimodal case illustrates the tightness of bounds based
on the Dp divergence relative to bounds based on the Bhattacharyya
distance, as well as the differences in the two extension methods dis-
cussed in Section 3. The bimodal case illustrates the vulnerability of
parametric bounds to non-Gaussian data. In Section 4.2 we utilize a
feature selection algorithm based on these bounds to identify feature
subsets that discriminate between different speech disorders.
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Fig. 2: True BER and error bounds for varying radii generated by each scenario of the synthetic data simulation.

4.1. Synthetic Data Example

To test the accuracy of the proposed bounds we consider the sce-
nario in which four bivariate class distributions are equally spaced
in a radial formation around the origin. We consider two scenar-
ios. In the first scenario, each class distribution is represented by a
single Gaussian distribution. In the second scenario the class distri-
butions from the first scenario are augmented by a second Gaussian
distribution at a 180◦ rotation from the first. This second scenario is
used to illustrate the behavior of the Bhattacharyya bound when the
parametric assumption that each class can be modeled by a single
Gaussian does not fit the actual data. The distribution placements
used in each scenario are presented in Figure 1.

Throughout this experiment, each Gaussian is isotropic with u-
nit covariance, and mean determined by the angle and radius. The
angle used to place each distribution is held constant (see Figure 1)
while the radius is varied from zero, where the distributions in each
scenario are completely overlapping, to eight where the distributions
in each scenario contain almost no overlap with the neighboring dis-
tributions. The radius is varied in increments of 0.2, and each class
distribution is represented by 1000 samples of data generated accord-
ing to the parameters of the distribution. At each radius, we generate
bounds on the Bayes error using both the recursive and closed-form
extensions described in Section 3 for the Dp and BC bounds. In
these calculations, the Dp-divergences are calculated using the ap-
proach described in [9]. The Bhattacharyya distances are estimated
in a parametric fashion by empirically estimating the mean and co-
variance matrices, then plugging the results into the explicit formula
for multivariate normal distributions defined in [14], and in a non-
parametric fashion by using a 2-dimensional histogram to estimate
each underlying distribution and solving for the BC by integration.
We obtain a ground truth value of the BER by integrating across the
true underlying class distributions. To reduce the variance of the es-
timator we average our results across 25 Monte Carlo iterations. The
resulting bounds are shown in Figure 2.

In Figure 2a, we see little difference between the parametric and
non-parametric estimates of the Bhattacharyya bound, other than a
slight negative bias that is most pronounced for tightly overlapping
distributions. Figure 2b shows that while the non-parametric Dp
and BC bounds remain largely unaffected by the addition of the
second Gaussian for each class, the parametric bounds do not hold
for radii exceeding 1.5 when the separation between modes is suffi-
cient to violate the parametric assumption. In both scenarios, theDp
bound provides a tighter bound on the BER. It should be noted that

the benefits of the Dp bound will only become more pronounced
in high-dimensional spaces where accurate non-parametric density
estimation is often infeasible [15].

4.2. Disordered Speech Example

Dysarthria is a motor speech disorder resulting from an underlying
neurological injury. In this Section, we discuss the challenge of dis-
tinguishing between three different Dysarthrias: Parkinson’s, Amy-
otrophic Lateral Sclerosis (ALS), and Ataxic Dysarthria. Automati-
cally classifying between different neurogenic disorders from speech
presents a major engineering challenge.

4.2.1. Data

We make use of data collected in the Motor Speech Disorders Lab-
oratory at Arizona State University, consisting of 71 dysarthric s-
peakers. Among these speakers we examine 17 speakers with ataxic
dysarthria, secondary to cerebellar degeneration, 15 mixed flaccid-
spastic dysarthria, secondary to ALS, and 39 speakers with hypoki-
netic dysarthria secondary to Parkinson’s Disease. Each patient pro-
vided speech samples, including a reading passage, phrases, and sen-
tences. The speech database consists of approximately 10 minutes
of recorded material per speaker. For a more detailed description of
the methods used to collect this dataset see [16].

4.2.2. Experiment

We partitioned the database into training and test sets, by random-
ly selecting 10 speakers from each subtype and 20 sentences from
each speaker to be placed in the training set. Complete sentence
data from all remaining speakers is then assigned to the test set. Af-
ter partitioning the data, we extract a total of 1201 features includ-
ing 99 long-term average spectrum (LTAS) features [17], 60 Enve-
lope Modulation Spectrum (EMS) features [18], 234 mel frequen-
cy cepstral coefficients (MFCC) features, and 783 additional spatio-
temporal features [19]. We then iteratively select features using a
forward selection feature selection (FS) algorithm that attempts to
minimize the closed-form and recursive extensions of the paramet-
ric Bhattacharyya and non-parametric Dp bounds discussed in Sec-
tion 4.1. We also include a wrapper feature selection method that
iteratively selects the features that maximize the performance of the
classifier on a held-out validation set. Wrappers will typically iden-
tify the optimal subset of features for the selected classifier, but are
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Fig. 3: Error rates in distinguishing between different speech disor-
ders as a function of the number of features selected.

computationally very burdensome [20] (run time exceeds 5 times
that of the proposed algorithm). Each FS algorithm is used to identi-
fy feature subsets of sizes 1-10. For each subset a classification tree
is trained on the training data, and evaluated on the test data. This
entire procedure is repeated over a 20-iteration Monte Carlo simula-
tion and the average performance achieved by the subsets from each
FS algorithm is displayed in Figure 3.

Figure 3 shows that the Dp-based FS algorithm achieved supe-
rior performance to BC-based algorithm throughout the experiment,
although the gap narrows as additional features are added. While
the Dp algorithm achieves slightly higher performance in the small-
er subsets, the wrapper yields the highest overall performance. We
were not able to observe any significant difference in the closed-form
and recursive bounds in this experiment, and other than some of the
later features chosen by theDp algorithm the two methods generally
returned the same set of features. This indicates that we are operat-
ing in the regime in Figure 2 after the two methods have converged
and the bounds become virtually identical.

5. CONCLUSION

In this paper we examine two previously established methods of
bounding the Bayes risk in multi-class machine learning problem-
s. Using these methods we generalize binary classification bound
based on the Dp-divergence to multi-class problems. We demon-
strate the tightness of this bound in the multi-class setting in an ex-
periment using synthetic data. We then examine the efficacy of a
feature selection algorithm based on this bound for the classification
of different neuro-motor disorders based on sentence-level speech
data.

6. APPENDIX

6.1. Upper bound proof

To prove that the recursive bound is tighter than the closed-form
bound, it is sufficient to prove that ΦM = ΘM ∀M , where ΦM

represents the recursive bound when α = 1, and ΘM represents the
closed-form upper bound.
Basic Step: Prove that Φ3 = Θ3

Φ3 =
1

3− 2α

3∑
i=1

(1− pi)Φ2
i = Θ3 (11)

Inductive Step: Suppose that ΦM−1 = ΘM−1. By definition:

ΦM =
1

M − 2

M∑
i=1

(1− pi)ΦM−1
i (12)

Using the inductive hypothesis

ΦM =
1

M − 2

M∑
i=1

(1− pi)ΘM−1
i

=
1

M − 2

M∑
i=1

(1− pi)
M∑
j=1

M∑
k=j+1

j 6=i,k 6=i

( pj
1− pi

+
pk

1− pi

)
Pejk

(13)
where pj

1−pi
reflects the normalized prior probability of class j for

the (M−1)-class subproblem with class i removed. After canceling
the (1− pi) terms

ΦM =
1

M − 2

M∑
i=1

M∑
j=1

M∑
k=j+1

j 6=i,k 6=i

(pj + pk)Pejk (14)

Note that every pairwise Bayes risk Pejk will occur in the interi-
or double summation except for those containing j = i or k = i.
Therefor every pairwise Bayes risk Pejk, j ∈ [M ], k ∈ [M\j] will
occur in the triple summation (M − 2)-times (M -times minus the
two instances when j = i or k = i). We can thus remove the outer
summation and the expression simplifies to

ΦM =
1

M − 2

M∑
j=1

M∑
k=j+1

(M − 2)(pj + pk)Pejk

=

M∑
j=1

M∑
k=j+1

(pj + pk)Pejk = ΘM .

(15)

Therefore, by induction ΦM = ΘM ∀M , and the recursive
bound must be at least as tight as the closed-form bound.

6.2. Lower bound proof

Prove that the recursive lower bound (φM ) equals the closed-form
lower bound(θM )

θM =
2

M

M−1∑
i=1

M∑
j=i+1

(pi + pj)Peij (16)

Basic Step:

φ3 =
2

3

3∑
i=1

(1− pi)φ2
i =

2

3

2∑
i=1

3∑
j=i+1

(pi + pj)Peij (17)

Inductive Step: Suppose φM−1 = θM−1, substituting this into the
definition for φM yields:

φM =
M − 1

M(M − 2)

M∑
i=1

2(1− pi)
M − 1

M−1∑
j=1

M∑
k=j+1

j,k 6=i

(pj + pk)

1− pi
Pejk

=
2

M(M − 2)

M∑
i=1

M−1∑
j=1

M∑
k=j+1

j,k 6=i

(pj + pk)Pejk

=
2

M

M−1∑
i=1

M∑
j=i+1

(pi + pj)Peij

(18)
Therefore, by induction the recursive and closed-form lower bounds
are equivalent for all M .
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