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ABSTRACT
In this paper, we study the problem of generating uniform random
point samples on a domain of d-dimensional space based on a min-
imum distance criterion between point samples (Poisson-disk sam-
pling or PDS). First, we formally define PDS via the pair correla-
tion function (PCF) to quantitatively evaluate properties of the sam-
pling process. Surprisingly, none of the existing PDS techniques
satisfy both uniformity and minimum distance criterion, simultane-
ously. These approaches typically create an approximate PDS with
high regularity, and inherently present high risk for sample aliasing.
Our new formulation based on PCF introduces a new approach to
evaluate PDS properties which leads to theoretical bounds on the
size of a PDS in arbitrary dimensions as well as a faster algorithm to
create better quality samplings than the current PDS approaches.

Index Terms— Poisson-disk sampling, dart throwing, multi-
dimensional sampling, maximal sampling

1. INTRODUCTION

Exploratory analysis and inference in high dimensional parameter
spaces is a ubiquitous problem in science and engineering and a
wide variety of machine learning tools and optimization techniques
are available. In the most generic formulation, one is interested in
analyzing a high-dimensional function f : D → R defined on the
d-dimensional domainD. The common approach is to first create an
initial sampling X = {xi ∈ D} of D, evaluate f at all xi, and ap-
proximate f using only the resulting pairs (xi, f(xi)). However, it
is well known that the effectiveness of this approach heavily depends
on the quality of the initial sampling X . Furthermore, evaluating f
through simulations or experiments is typically expensive. There-
fore, often the goal is to use as few samples as possible to provide as
much information as possible.

Without prior knowledge of f , one objective when creating X
is that the sampling should be random to have an equal chance of
finding features of interest, e.g., local minima in an optimization
problem, anywhere in D. The second objective is to cover all of D
uniformly in order to guarantee that all sufficiently large features are
found. The most common approach in practice is to use Latin Hyper-
cube sampling [1] which generates samples that are typically neither
random nor uniform. While easy to create, such designs, in gen-
eral, require significantly more points to achieve, for example, the
same regression error than more optimized sampling designs. Opti-
mal sampling in this respect is referred to as Poisson Disk Sampling
(PDS) [2–26] defined as a set of xi’s that are randomly distributed
(Objective 1) but no two samples are closer than a given minimum
distance rmin (Objective 2) (See Figure 1(a)). Unfortunately, cur-
rently there does not exist an algorithm to create a theoretically ac-
curate PDS. In particular, existing techniques largely ignore the ran-

domness objective and instead concentrate exclusively on the rmin

condition. This leads to the notion of a maximal-PDS (MPDS) in
which no two samples are closer than rmin and no more points in D
can be added. However, as we will demonstrate later, existing tech-
niques to generate MPDS actually violate the randomness constraint
and in fact resulting samplings typically contain significantly more
points than theoretically possible for a PDS of a given rmin. Further-
more, guaranteeing maximality requires expensive checks causing
the resulting algorithms to be slow in moderate (2-5) and practically
infeasible in high (7 and above) dimensions. Here we introduce a
new approach to understand the nature of PDS which leads to theo-
retical bounds on the size of a PDS in arbitrary dimensions as well as
a faster algorithm to create higher quality samplings than the current
MPDS approaches.

First, we formally define a PDS via the pair correlation func-
tion (PCF). The PCF of a point measures the distribution of its dis-
tance to all other points (See Figure 1(b)). It has been shown that
the degrees of freedom to characterize point distributions in the pair
correlation space is low and can be directly linked to regularity [7].
Using this new PDS formulation, we formally pose an optimization
problem for determining the upper bound on the sample budget N
(or rmin), that does not violate PDS requirements, for a given radius
rmin (or a sample budget N ). These bounds hold for arbitrary di-
mensions and arbitrary parallelepiped domains not just for the unit
cube. A striking result is that the theoretical upper bound is signif-
icantly lower than the sample size of the corresponding MPDS and
the difference increases significantly with increasing number of di-
mensions. In particular, we show that existing sequential algorithms
to create a MPDS typically create an approximate PDS before the
maximality constraint forces more and more samples to be added
which only increase the regularity and thus the potential for aliasing.
Paradoxically, due to the nature of these algorithms the later sam-
ples, added for maximality, are computationally more expensive to
compute than the earlier samples. Therefore, knowing the theoreti-
cal upper bound on N for a given rmin leads to faster algorithms by
simply terminating the sampling process early, once an approximate
PDS has been found. Finally, we derive expressions for the power
spectral density of a PDS and demonstrate that the current MPDS
techniques can lead to undesired aliasing. In summary, by using
PCFs to analyze PDSs we provide new theoretical insights into the
sampling process and faster algorithms to create true PDS that are
expected to perform significantly better in practice.

2. PRELIMINARIES

Poisson Disk Sampling: Poisson-disk sampling is a process that
distributes uniform random point samples on a domain of d-
dimensional space based on a minimum distance criterion between
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Fig. 1. Poisson Disk Sampling. (a) Poisson disk point samples. (b)
Pair correlation function of Poisson disk sampling.

point samples.

Definition A set ofN point samples xi in a sampling domainD are
Poisson disk samples, if X = {xi ∈ D; i = 1, · · ·N} satisfy the
following two conditions [2]:

• ∀xi ∈ X, ∀S ⊆ D : P (xi ∈ S) =
∫
S
dx

• ∀xi,xj ∈ X : ||xi − xj|| ≥ rmin

where rmin is the Poisson disk radius.

The first condition states that the probability of a uniformly dis-
tributed random sample xi ∈ X falling inside a subset S of D is
equal to the hyper-volume of S. On the other hand, the second con-
dition enforces the minimum distance constraint between point sam-
ple pairs. A Poisson sampling process enforces the first condition
alone, in which case the number of samples that fall inside any sub-
set S ⊆ D obeys a discrete Poisson distribution. Though easier to
implement, Poisson sampling often produces distributions where the
samples are grouped into clusters. Consequently, a sampling process
that distributes random samples in an even manner across D is pre-
ferred, so that no clustering is observed. The disk condition helps to
eliminate the clustering behavior by preventing samples from being
closer than rmin.

Pair Correlation Function: The pair correlation function describes
the joint probability of having points at two locations x and y at
the same time. A precise definition of the PCF can be given in
terms of the intensity λ and product density ρ of a point process [7].
The intensity λ(X) of a point process X is the average number
of points in an infinitesimal volume around X . In other words,
λ measures the average density of the points. For isotropic point
processes, this is a constant value. To define the product density,
let {Bi} denote the set of infinitesimal spheres around the points,
and {dVi} denote the volume measures of Bi. Then, we have
P (x1, · · · ,xN) = ρ(x1, · · · ,xN)dV1 · · · dVN . In the isotropic
case, for a pair of points, ρ depends only on the distance between
the points, hence one can write ρ(xi,xj) = ρ(||xi − xj||) = ρ(r)
and P (r) = ρ(r)dxdy. The PCF is then defined as

G(r) =
ρ

λ2
. (1)

In this paper, we define Poisson Disk Sampling using PCF, which
enables us to quantitatively understand Poisson disk distributions by
mapping them into the PCF space constructed based on spatial dis-
tances between points.

3. DEFINING PDS USING PAIR CORRELATION
FUNCTION

For Poisson processes, point locations are not correlated and, there-
fore, P (r) = λdxλdy. This implies that for Poisson sampling
G(r) = 1. Similarly, for PDS, due to the minimum distance con-
straint between the point sample pairs, we do not have any point
samples in the region 0 < r < rmin. Consequently, we define the
PCF for Poisson disk sampling as a step function.

Definition Given the desired radius rmin, Poisson disk sampling is
defined in the PCF domain as

G(r − rmin) =

{
0 if r < rmin

1 if r ≥ rmin.

3.1. Power Spectral Density Derivation

In this section, we derive the power spectral density of the defined
PDS based on Fourier properties. Let us denote the power spectral
density by P (k) and PCF by G(r) respectively. We know that

P (k) = 1 + ρF (G(r)− 1) (2)

= 1 + ρ

∫
Rd

(G(r)− 1) exp(−ik.r)dr (3)

where ρ = N/V , with V being volume of the sampling region, and
F (.) denotes the d-dimensional Fourier transform. Note that, for the
radially symmetric or isotropic functions, i.e., G(r) where r = ||r||,
the above relationship simplifies to

P (k) = 1 + ρ (2π)
d
2 k1−

d
2H d

2
−1

(
r

d
2
−1(G(r)− 1)

)
(4)

where
Hv(f(r))(k) =

∫ ∞
0

rJv(kr)f(r)dr

is the one dimensional Hankel transform of order v with J being
the Bessel function. To derive the PSD of a step function, we first
evaluate the Hankel transform of f(r) = (G(r)− 1) where G(r) is
a step function.

H d
2
−1

(
r

d
2
−1(G(r)− 1)

)
=

∫ ∞
0

r
d
2 J d

2
−1(kr) (G(r)− 1) dr

= −
∫ rmin

0

r
d
2 J d

2
−1(kr) (G(r)− 1) dr

= −
r
d
2

min

k
J d

2
(krmin)

Using this expression in (4),

P (k) = 1− ρ
(

2πrmin

k

) d
2

J d
2

(krmin). (5)

4. THEORETICAL BOUNDS FOR PDS CREATION

Although the uniform randomness and disk constraints are sufficient
to specify a valid PDS, there is an additional condition that charac-
terizes a distribution as being maximal.

A maximal Poisson disk distribution is one where it is not pos-
sible to insert any further samples without violating the minimum
distance constraint, i.e.,

∀x ∈ D, ∃xi ∈ X : ||x− xi|| < rmin.
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Fig. 2. Pair correlation function of different point sampling patterns. (a) Poisson sampling. (b-d) Sampling distributions generated by the
algorithm in [3], with rmin = 0.01, after adding N = 3000, 5000 and 7000 samples respectively, (e) Regular grid sampling. Note that, the
PCF in case (b) is the closest to the ideal PDS in Section 3 and the sample size agrees with the proposed theoretical upper bound for PDS.
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Fig. 3. Impact of compromising uniformity on risk for aliasing.

Our definition of PDS in the PCF domain enables us to obtain new
insights into the sampling process.

In particular, (a) For a fixed rmin, we obtain the number of point
samples needed to make the Poisson disk sampling maximal in ar-
bitrary dimension d, (b) For a fixed sampling budget N , we derive
the maximum achievable rmin in arbitrary dimension d. Existing ap-
proaches for maximal-PDS [3] experimentally obtain the bounds for
N , by sequentially adding samples until the disk condition is vio-
lated. Surprisingly, we find that none of those bounds are theoret-
ically accurate, and more importantly such maximal-PDS samples
can cause aliasing.

Before presenting our main results, we state the two necessary
mathematical conditions that the PCF of a sampling pattern must sat-
isfy to be realizable: (a) The pair correlation function of the sampling
pattern must be non-negative, i.e., G(r) ≥ 0, ∀r, and (b) The PSD
of the sampling pattern must be non-negative, i.e., P (k) ≥ 0, ∀k.
Note that, these conditions limit the range of realizable PCFs.1

Finding Maximum N for a fixed rmin: The problem of finding
maximum number of point samples for PDS with a given disk radius

1Whether or not these two conditions are not only necessary but also suf-
ficient is still an open question (however, no counterexamples are known).

rmin can be formalized as follows:

maximize N

subject to P (k) ≥ 0, ∀k
G(r − rmin) ≥ 0, ∀r

(6)

where P (k) = 1− ρ
(

2πrmin

k

) d
2

J d
2

(krmin).

Proposition 1 For a fixed Poisson disk radius rmin, the maximum
number of point samples needed for maximal Poisson disk sampling
in the sampling region with volume V is given by

N =
V Γ

(
d
2

+ 1
)

π
d
2 rdmin

.

Proof Using the definition of the step function, the constraintG(r−
rmin) is trivially satisfied. Note that, the constraint P (k) ≥ 0, ∀k is
equivalent to min

k
P (k) ≥ 0. In other words,

min
k

1− ρ
(

2πrmin

k

) d
2

J d
2

(krmin) ≥ 0

⇔ max
k

ρ

(
2πrmin

k

) d
2

J d
2

(krmin) ≤ 1

⇔ ρ (2π)
d
2 rdmin max

k

(
J d

2
(krmin)

(krmin)
d
2

)
≤ 1

⇔ ρ (2π)
d
2 rdmin

1

2
d
2 Γ
(

d
2

+ 1
) ≤ 1

⇔ N ≤ V Γ (d/2 + 1) / ((π)
d
2 rdmin)

where, we have used the fact that Jv(x) ≈ (x/2)v/Γ(v + 1).

Note that, for the 2-dimensional case, we have J1(krmin)
krmin

= jinc(krmin).
Now using the fact that jinc(x) has the maximum value equal to 1/2,
for a fixed Poisson disk radius rmin, the maximum number of point
samples needed for maximal 2-d Poisson disk sampling is given by

N = V/π(rmin)
2,
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Fig. 4. Impact of the choice of radius for PDS generation on aliasing
characteristics.

which again corroborates our bound in Proposition 1.
Finding Maximum rmin for a fixed N : Alternately, we can also de-
rive the bound for maximum Poisson disk radius with a fixed sam-
pling budget N as follows:

maximize rmin

subject to P (k) ≥ 0, ∀k
G(r − rmin) ≥ 0, ∀r

(7)

Proposition 2 For a fixed sampling budget N , the maximum Pois-
son disk radius rmin for Poisson disk sampling in the sampling region
with volume V is given by

rmin =
d

√
V Γ

(
d
2

+ 1
)

π
d
2N

.

Proof The proof is similar to the one in Proposition 1.

5. RESULTS AND DISCUSSION

5.1. Observations on PDS generation

We used the maximal-PDS algorithm proposed in [3] to synthesize
point samples for rmin = 0.01. We found that the algorithm termi-
nated at N = 7054 samples, beyond which no more samples could
be added without violating the disk condition. From Proposition 1,
we find the upper bound N∗ = 3185 for the proposed PDS dis-
tribution. In Figure 2, the sampling patterns generated at different
iterations of this sequential algorithm are shown, along with their
corresponding PCFs. In addition, we show Poisson samples (with-
out the disk condition) and samples on the regular grid. Firstly, it
can be seen that as we move away from Poisson sampling to regular
grid sampling, the uniformity or randomness in the point sampling
pattern decreases, which appears as a peak close to rmin in the PCF.
Secondly, at the proposed sample bound (Fig. 2(b)), the PCF follows
the ideal PDS definition, while compromising on the uniformity as
the algorithm adds more samples. Surprisingly, none of the existing
algorithms produce a theoretically correct PDS, the consequences of
which will be discussed in the next section.

Since the proposed sample bound can potentially guarantee an
accurate PDS, we can modify the MPDS algorithm [3] to terminate
earlier than required, i.e, when the sample size reaches N∗. In Ta-
ble 1 we compare the performance of the algorithm by measuring
the run time (in seconds) to generate the proposed PDS in different

Table 1. The sample sizes and run time (in seconds) required to
generate PDS in comparison to the approximate PDS [3]

Dimension Radius Algorithm in [3] Proposed PDS
N Time (s) N* Time (s)

2 0.005 28098 14.34 12739 10.01
2 0.007 14361 7.34 6499 5.14
2 0.01 7054 3.51 3185 2.49
3 0.03 28776 182.7 8853 88.6
3 0.04 12384 17.55 3735 6.83
4 0.1 10779 1154.59 2028 305.3
4 0.2 849 18.22 127 3.25

dimensions (d = 2, 3, 4), in comparison to the actual approach. It
can be seen from Table 1 that later samples (after N∗), added for
maximality in MPDS, are computationally more expensive to com-
pute than the earlier samples. Furthermore, the run time performance
deteriorates significantly as we increase the number of dimensions.

5.2. Empirical Analysis of Quality of Sampling Patterns

To assess the quality of the sampling patterns, one can analyze the
spectral behavior of the sampling patterns. More specifically, the
power spectral density of an ideal sampling pattern should satisfy the
following two properties [8]: (a) the spectrum should be close to zero
for low frequencies which indicates the range of frequencies that
can be represented with almost no aliasing, (b) the spectrum should
be a constant for high frequencies or contain minimal amount of
oscillations in the power spectrum which reduces the risk of aliasing.
Based on these two criteria, we assess the quality of the PDS in the
Fourier domain. To emulate the approximate PDS as observed with
maximal-PDS algorithms, we model its PCF as

G(r) = G(r − rmin) + a (G(r − rmin)−G(r − rmin − δ))

whereG(r−rmin) is the step function, δ ≥ 0 and the peak height a ≥
1. We calculate the power spectral density (PSD) of the sampling
patterns using Hankel transform relationship as given in (4).

In order to study the impact of compromising uniformity in the
PCF, at the risk of aliasing, we evaluated the PSD of the approxi-
mate PSD with N = 195, rmin = 0.02, δ = .005). Note that, we
varied the PCF peak height a which reflects the behavior of existing
sequential PDS algorithms. Surprisingly, as shown in Figure 3, in-
creasing a results in both significantly higher low frequency aliasing
and larger high frequency oscillations. As expected, the PSD of the
ideal PCF proposed in this paper (or a = 1) performs the best, i.e.,
the spectrum is close to zero for low frequencies and constant for
high frequencies as required in an ideal sampling pattern.

Finally, we study the importance of choosing an appropriate rmin

while generating PDS distributions. Though the general intuition is
to choose the largest possible rmin for a given N (Proposition 2), our
analysis reveals an interesting trade-off. In Figure 4, we plot PSD of
the approximate PDS sampling pattern for N = 195 with varying
PDS radius rmin. For a fixed sample budget, as we increase the radius
from a lower value towards its upper bound 0.04, we observe two
contrasting changes to the PSD: 1) the spectrum tends to be close to
zero at low frequencies and 2) significant increase in oscillations for
high frequencies. Thus, there is a trade-off between low frequency
aliasing and high frequency oscillations which can be controlled by
varying rmin depending on the application of interest.
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