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ABSTRACT

In this paper, we propose a supervised subspace learning
method that exploits the rich representation power of deep
feedforward networks. In order to derive a fast, yet effi-
cient, learning scheme we employ deep randomized neural
networks that have been recently shown to provide good
compromise between training speed and performance. For
optimally determining the learnt subspace, we formulate a re-
gression problem where we employ target vectors designed to
encode both the labeling information available for the train-
ing data and geometric properties of the training data, when
represented in the feature space determined by the network’s
last hidden layer outputs. We experimentally show that the
proposed approach is able to outperform deep randomized
neural networks trained by using the standard network target
vectors.

Index Terms— Supervised Subspace Learning, Deep
Neural Networks, Network targets calculation

1. INTRODUCTION

Feedforward neural networks have been adopted in many pat-
tern recognition problems due to their ability to approximate
any complex decision function and because they achieve ex-
cellent performance in real-world applications. While there
are theoretical proofs for the global approximation ability of
single-hidden layer networks [1, 2], properly trained deep
neural networks can learn much more complex relationships
between the training data, leading to feature spaces of higher
representation powers. The adoption of such feature spaces
has the potential of achieving improved classification perfor-
mance.

In order to overcome the drawbacks of slow training and
early convergence of feedforward networks trained using
gradient-based weight adaptation strategies, like the Back-
propagation algorithm [3], randomized approaches have
been proposed, mainly for single-hidden layer networks
[4, 5, 6, 7, 8]. The main idea in such techniques is that the
learning process used for the determination of the network’s
hidden layer and the output weights need not be connected.
By employing input weights which are randomly drawn from
a multi-dimensional distribution (e.g. Gaussian, or uniform),

they apply a randomized data projection to a feature space
of (usually) high dimensions (commonly followed by a non-
linearity). By using an adequately high number of hidden
layer neurons, it has been proven that the problem to be
solved can be transformed to an easier one, where linear tech-
niques, like Least Squares-based regression, can be applied.
The fact that the network’s hidden and output weights are
determined independently has a number of advantages that
can be exploited, for example, for facilitating the implemen-
tation of parallel/distributed systems. In addition, it has been
shown to perform well in many classification problems, such
as human action recognition [9, 10, 11].

Recently, this approach has been extended for the training
of deep neural networks, i.e. networks formed by multiple
hidden layers, [12, 13]. These training algorithms, either em-
ploy random weights for all the hidden layers of the network,
or stack unsupervised representations learned by using ran-
dom hidden layer neurons for training Auto-Encoders (AE).
Finally, linear (Least Squares-based) regression is applied in
order to learn the network’s output weights based on target
vectors, each of which denotes the class of a training sam-
ple. This process leads to the determination of more com-
plex and powerful data representations and usually enhances
performance, when compared to single-hidden layer networks
[12, 13].

In this paper, we are interested in supervised subspace
learning approaches that are able to exploit the enriched rep-
resentation power of deep neural networks. In order to de-
rive a fast, yet efficient, learning scheme we employ the Hier-
archical Extreme Learning Machine (H-ELM) algorithm re-
cently proposed in [13] for randomized deep neural networks
training that is based on a hierarchic process learning data
representations of increased representation power. We show
that for effective supervised subspace learning using regres-
sion models in deep networks, the network’s output weights
need to be determined by using modified target vectors en-
coding both the labeling information of the training data and
geometric properties of the feature space determined by the
network’s last hidden layer outputs. For the determination of
such target vectors, we reformulate the method proposed in
our recent work [14], which is based on a Bayesian class de-
scription. We experimentally show that deep networks trained
by using the proposed method are able to outperform deep
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networks trained by applying the original approach exploit-
ing the standard network targets [13].

2. RELATED WORK

In this Section, we briefly describe the training algorithm pro-
posed in [13] for deep neural networks’ training that we will
employ in our supervised subspace learning scheme.

Let us denote by xi ∈ RD, i = 1, . . . , N a set of vec-
tors and the corresponding class labels ci ∈ {1, . . . , C}. We
will use these vectors in order to train a deep neural net-
work formed by NL hidden layers. The number of neurons
in the network’s input and output layers are equal to D (equal
to the dimensionality of xi) and C (equal to the number of
classes), respectively. The number of neurons in the l-th hid-
den layer is equal to Ll, l = 1, . . . , NL. Let us denote by
Win ∈ RC×L1 the weights connecting the network’s input
and first hidden layers and by Wout ∈ RLNL

×C the weights
connecting the network’s last hidden and output layers. We
denote the weights connecting the l-th and (l + 1)-th hidden
layers of the network by Wl ∈ RNl×Nl+1 . For notation sim-
plicity, we assume that the bias values of the network’s layers
have been absorbed in the network’s weights.

The Hierarchical ELM (H-ELM) algorithm [13] is built in
an incremental manner by following a process formed by two
steps:

1. Unsupervised hierarchical data representation learning
and

2. Supervised data projection based on Least Squares re-
gression.

Before unsupervised feature learning, the input vectors xi are
transformed into an ELM random feature space by using the
randomly assigned weights Win. By doing this, each input
vector xi is mapped to a vector h1

i ∈ RL1 , where we used the
superscript to denote the number of hidden layer defining the
feature space used for data representation. We use all vectors
h1
i , i = 1, . . . , N in order to form the matrix H1 ∈ RL1×N .

Given Hl, we train an AE as follows:

• We determine a random data mapping from Hl to Hl+1

using randomly assigned weights W̃l ∈ RLl×Ll+1 fol-
lowed by a non-linearity.

• We calculate the network’s hidden layer weights Wl by
optimizing for:

Wl = argmin
Wl

‖WT
l Hi+1 −Hl‖22 + ‖Wl‖1 (1)

The above-given optimization problem is solved by ap-
plying a fast iterative shrinkage-thresholding algorighm
(FISTA) [15]. By applying this process, a compact
representation of the data representations in the feature
space of the network’s l-th layer is obtained. This new

representation is stacked on top of the existing network
(formed by l + 1 layers).

The above-described process is applied in a hierarchical
manner in order to determine the weights of the network’s
hidden layers and the data representations in the feature
space determined by the network’s last hidden layer outputs
HNL−1 ∈ RNL×N are obtained.

After the calculation of HNL−1, a linear regression prob-
lem is solved in order to map hLN−1

i to target vectors ti ∈
RC , i = 1, . . . , N . The elements of the network target vec-
tors ti = [ti1, ..., tiC ]T are set to tik = 1 for samples be-
longing to class k, i.e., when ci = k, and to tik = −1 when
ci 6= k. The network output weights are calculated by solving
the following optimization problem:

Minimize: J =
1

2
‖Wout‖2F +

c

2

N∑
i=1

‖ξi‖
2
2 (2)

Subject to: WT
outh

LN−1
i = ti − ξi, i = 1, ..., N, (3)

where ξi ∈ RC is the error vector corresponding to xi and
c > 0 is a parameter denoting the importance of the train-
ing error in the optimization problem. The network output
weights Wout can be determined by optimizing the dual
problem:

J̃ =
1

2
‖Wout‖2F +

c

2

N∑
i=1

‖ξi‖22

−
N∑
i=1

ai

(
WT

outh
LN−1
i − ti + ξi

)
, (4)

which is equivalent to (2). By calculating the derivatives of
J̃ with respect to Wout, ξi and ai and setting them equal to
zero, the network output weights Wout are obtained by:

Wout =

(
HNL−1H

T
NL−1 +

1

c
I

)−1

HNL−1T
T , (5)

or

Wout = HNL−1

(
HT
NL−1HNL−1 +

1

c
I

)−1

TT . (6)

From the above, it can be seen that for the determination
of the network target vectors (and thus for the determination
of the network output weights Wout), only the labeling infor-
mation of the training data is exploited. As it has been shown
in [14] for single-hidden layer networks, in subspace learning
problems this approach provides inferior performance when
compared to the adoption of target vectors encoding informa-
tion concerning both the training data labels and training data
geometric properties when represented in the ELM space. In
the next section, we formulate a process for the determination
of such target vectors for deep networks training.
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3. TARGET VECTORS DETERMINATION

Taking into account both ci and hLN−1
i , the probability of

class k can be expressed using the Bayes formula as:

p(k|ci,hLN−1
i ) ∝ p(ci,hLN−1

i |k)p(k), (7)

where ∝ denotes the proportionality operator. The class
probability p(k) can be estimated by exploiting the la-
beling information of the training data as p(k) = Nk

N ,
where Nk denotes the number of training vectors belong-
ing to class k. Since for the calculation of the conditional
probabilities p(ci,h

LN−1
i |k) using the training vectors an

enormous training set would be required, we can define
p(ci,h

LN−1
i |k) = p(hLN−1

i |k)p(ci|k), where independence
between ci and hLN−1

i is assumed. That is, the probabil-
ity of class k, given the observations ci and hLN−1

i , can be
expressed by:

p(k|ci,hLN−1
i ) ∝ p(hLN−1

i |k)p(ci|k)p(k). (8)

In order to define the above mentioned probabilities, we
would like to define an appropriate model for the classes
forming the classification problem, when represented in the
ELM space. Let us consider the One-Versus-All classification
problem corresponding to the k-th output neuron. By setting
the target values tik = 1 for training samples belonging to
class k and tik = −1 for training samples that do not belong
to class k, H-ELM assumes that class k can be discriminated
from all other classes by using a hyperplane passing through
the origin in the high-dimensional ELM space RNL . This
leads to the assumption that class k is homogeneous in RNL .

Exploiting the class unimodality assumption of ELMs
[14], we define the representation of class k in RNL by the
corresponding class mean vector:

mk =
1

Nk

∑
j,cj=k

hLN−1
j . (9)

Algorithm 1 Supervised Subspace Learning based on Deep
Neural networks

Input {xi, ci}, i = 1, . . . , N , L, Nl, l = 1, . . . , N , Φ(·).
Randomly assign input parameters Win ∈ RC×L1 .
Perform ELM mapping from xi to h1

i , i = 1, . . . , N .
for l = 1:NL−1 do

Perform a random ELM mapping using W̃l ∈ RLl×Ll+1

Optimize (1) to determine Wl.
end for
Using h

NL−1

i , i = 1, . . . , N determine target vectors
ti, i = 1, . . . , N based on (8).
Calculate Wout from (5).
return Win,Wout and W̃l, l = 1, . . . , NL−1.

After the calculation of the class mean vectors mk, k =
1, . . . , C of all the classes forming the classification problem,

Table 1. UCI datasets details.
Dataset Samples Dimensions (D) Classes (C)
Australian 690 14 2
Column (2c) 310 6 2
Column (3c) 310 6 3
German 1000 24 2
Glass 241 9 6
Heart 270 13 2
Indians 768 8 2
Ionosphere 351 34 2
Madelon 2600 500 2
Relax 182 12 2
Segmentation 2310 19 7
Spect 267 22 2
Spectf 267 44 2
Synth.Cont. 600 60 6
TAE 151 5 3
TicTacToe 958 9 2

the conditional probabilities p(hLN−1
i |k) can be calculated

by:

p(hLN−1
i |k) =

d(mk,h
LN−1
i )∑C

j=1 d(mj ,h
LN−1
i )

, (10)

where d(mk,h
LN−1
i ) is a function denoting the similarity of

hLN−1
i and mk. In order to increase class discrimination, we

employ the following similarity measure in our experiments:

d(mk,h
LN−1
i ) = exp

(
−γ‖mk − hLN−1

i ‖22
)
. (11)

In (11), γ > 0 is a parameter that is used in order to scale
the Euclidean distance between mk and hLN−1

i . In this paper
we set γ = 1

rσ2 , where σ is set equal to the mean Euclidean
distance between hLN−1

i , 1 = 1, . . . , N and mk.
Following a similar approach, the conditional probabili-

ties p(ci|k) can be obtained by:

p(ci|k) =
d(mk,mci)∑C
j=1 d(mj ,mci)

, (12)

where d(mk,mci) is given by:

d(mk,mci) = exp
(
−δ‖mk −mci‖22

)
. (13)

While the parameter δ > 0 can be optimized by applying the
cross-validation approach, we have experimentally observed
that a value of δ = 1

2σ2
m

, where σm is the mean Euclidean
distance between the mean class vectors provides satisfactory
performance in all tested cases. It should be noted here that
the standard ELM approach using target values tik ∈ {−1, 1}
is a special case of the previously described approach for γ �
1, δ � 1 and p(k) = 1, k = 1, . . . , C.

The proposed method for supervised subspace learning
based on deep randomized networks is illustrated in Algo-
rithm 1.
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Table 2. Performance of the two approaches in UCI datasets.
NL = 250 NL = 500

Dataset H-ELM Proposed H-ELM Proposed
Australian 64.35(±0.01) 64.44(±0.28) 66.27(±0.32) 67.27(±0.37)
Column (2c) 77.19(±0.31) 77.87(±0.41) 77.48(±0.2) 78(±0.82)
Column (3c) 78.97(±0.2) 78.61(±0.31) 76.16(±0.1) 78.65(±0.2)
German 62.39(±0.35) 64.13(±0.54) 63.29(±0.01) 64.01(±0.01)
Glass 57.2(±1.05) 61.07(±1.22) 60.35(±0.27) 62.37(±0.59)
Heart 61.63(±0.47) 64.89(±0.25) 63.48(±0.7) 63.59(±0.35)
Indians 63.65(±0.33) 64.79(±0.21) 62.15(±1.36) 63.74(±0.2)
Ionosphere 84.29(±0.98) 87.19(±0.9) 81.09(±0.36) 83.02(±0.53)
Madelon 57.49(±0.01) 58.97(±0.01) 58.07(±0.01) 59.97(±0.01)
Relax 65.75(±0.33) 66.69(±0.7) 64.6(±0.86) 67.18(±0.34)
Segmentation 82.07(±0.01) 78.77(±0.31) 78.09(±0.3) 80.59(±0.01)
Spect 74.67(±0.71) 74.93(±1.19) 74.34(±0.72) 74.78(±0.5)
Spectf 73.91(±0.34) 76.41(±0.01) 75.33(±0.94) 76.33(±0.24)
Synth.Cont. 90.55(±0.69) 89.93(±0.32) 92.1(±0.21) 93.23(±0.32)
TAE 61.83(±0.62) 65.42(±0.42) 64.5(±0.6) 64.54(±0.82)
TicTacToe 69(±0.36) 68.66(±0.92) 60.65(±1.61) 63.44(±0.1)

4. EXPERIMENTS

In this Section we provide experiments conducted in order
to compare the two approaches. We have employed 16 pub-
licly available datasets coming from the UCI Machine Learn-
ing repository [16] to this end. Information related to the
datasests used is illustrated in Table 1. For performance eval-
uation we have applied the five fold cross-validation process
where the performance of each algorithm in one experiment
is evaluated by calculating the mean classification rate over
all folds. On each dataset, we have applied 10 experiments,
and we measured the performance of each algorithm by calcu-
lating the mean classification rate and the standard deviation
over all 10 experiments.

We have tested the performance of two network topolo-
gies, each of which is formed by three hidden layers. The
number of hidden layer neurons used in these networks is set
to Ll = 250, l = 1, . . . , NL and Ll = 500, l = 1, . . . , NL,
respectively. After training the networks, we mapped both the
training and test data to the obtained feature space and we ap-
plied classification using the Nearest Neighbor classifier. The
optimal regularization parameter value has been determined
by applying a grid search strategy using the vales c = 10(0:6).
Experimental results are illustrated in Table 2.

As can be seen in Table 2, the exploitation of target vec-
tors encoding both the labeling information of the training
data and geometric properties of the feature space determined
by the network’s last hidden layer outputs leads to better per-
formance in twelve (out of sixteen) cases when using a net-

work with L = 3 and Nl = 250, l = 1, 2, 3. When using a
larger network topology, (Nl = 500) the adoption of the pro-
posed target vectors leads to better performance in all cases.
This is interesting, since we expect that the adoption of larger
network topologies will lead to reacher data representations
and, thus, more discriminant feature spaces for supervised
subspace learning.

5. CONCLUSION

In this paper, we proposed a supervised subspace learning
method that is based on deep randomized neural networks
and regression models. We showed that for efficient subspace
learning the exploitation of information related to both the la-
bels of the training data and the geometric properties of the
feature space determined by the network’s last hidden layer
outputs should be taken into account. For this reason, we for-
mulated a Bayesian model for the calculation of appropriate
target vectors that can be subsequently used for deep neural
network-based supervised subspace learning. Experimental
results on publicly available dataset show that the proposed
method can outperform the original approach. Possible fu-
ture research directions would be the exploitation of kernel
versions of ELM networks [17, 18] and the exploitation of
geometric class/data relationships [9, 19, 20] and discriminant
learning criteria [21] for forming deep network architectures.
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