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ABSTRACT

We propose a new approximation method for Gaussian process (GP)

regression based on the mixture of experts structure and variational

inference. Our model is essentially an infinite mixture model in

which each component is composed of a Gaussian distribution over

the input space, and a Gaussian process expert over the output space.

Each expert is a sparse GP model augmented with its own set of in-

ducing points. Variational inference is made feasible by assuming

that the training outputs are independent given the inducing points.

In previous works on variational mixture of GP experts, the induc-

ing points are selected through a greedy selection algorithm, which is

computationally expensive. In our method, both the inducing points

and hyperparameters of the experts are learned through maximizing

an improved lower bound of the marginal likelihood. Experiments

on benchmark datasets show the advantages of the proposed method.

Index Terms— Gaussian process, variational inference.

1. INTRODUCTION

The Gaussian process (GP) models are powerful non-parametric

tools for Bayesian regression [1–5] and classification [6–10]. The

main limitation of GP is the high computational cost due to the need

for the inversion and storage of the kernel matrix. This unfavorable

scaling hinders its application to large datasets. Many sparse GP

approximation methods have been proposed to overcome this limi-

tation [11–16]. Common to these methods is the approximation of

all training data via a small set of inducing points. These methods

normally work well for simple datasets. However, in large and

complex datasets, the dependencies between observations cannot be

well-captured by a small set of inducing points. In addition, a single

GP, supported by a small set of inducing points, cannot account for

the non-stationarity and locality in such datasets as argued in [17].

A class of models called mixture of GPs [17–21] has been pro-

posed to address the above issues. In these models, a gating net-

work divides the input space into regions within which a specific

GP expert is responsible for making predictions. In this way, mix-

tures of GPs can naturally address the non-stationarity and locality

in the datasets. In addition, the computational complexity is also

reduced as the storage and inversion of a large kernel matrix are re-

placed by those of multiple smaller matrices. Inference for these

models involves the simultaneous learning of both the experts and

the gating network. Due to the complexity of the inference problem,

approximate techniques are often required. Most existing mixtures

of GPs [17, 19] resort to the intensive Markov chain Monte Carlo

(MCMC) sampling, which can be very slow. This prohibits their

application to even moderate-sized problems [21].

Recently, several variational mixtures of GP experts [20, 22]

have been proposed to use variational inference [23], which is a

more flexible and faster alternative to MCMC sampling. In these

methods, each GP expert has its own set of inducing points, and is

described by a linear model. This linear model was first proposed

by Silverman in [24] for sparse GP approximation. In [25], it was

proved to be equivalent to embedding a deterministic relation be-

tween latent function values at any arbitrary points and those at the

inducing points. The linear model breaks the dependency among

training outputs and makes variational inference feasible. However,

these variational mixtures of GP experts suffer from two limitations.

First, the approximate prior given by the linear model is degener-

ate with only M degrees of freedom [25], where M is the number

of inducing points. This degeneracy leads to unreasonable predic-

tive distributions with over-confident predictive variances. Second,

although most hyper-parameters of the model can be estimated by

maximizing the variational lower-bound of the marginal likelihood,

identifying the inducing points in this way becomes computationally

difficult. This is due to the tight coupling between the model param-

eters and the inducing points. As a result, the inducing points must

be fixed through a separate greedy selection algorithm.

In this paper, we propose a new variational mixture of GP ex-

perts to overcome the above limitations. In our proposed method,

each GP expert accompanied by its own set of inducing points is a

sparse approximation to the full GP. Instead of imposing a determin-

istic relation between latent variables at training points and those

at inducing points like in [20, 22], our model uses an approximate

conditional distribution of the latent variables assuming that they are

independent given the inducing points. In this way, variational in-

ference in our model is made feasible without suffering from the

degeneracy problem mentioned above. To tackle the second limita-

tion, we propose to learn both the hyper-parameters and the induc-

ing points through maximizing a corrected lower bound of the true

marginal likelihood, which is inspired by the KL-corrected bound

proposed in [26]. The introduction of this corrected bound provides

two-fold benefits. First, it improves the convergence speed of vari-

ational approximation. Second, it removes the tight dependence be-

tween the inducing points and other parameters in the original vari-

ational bound, thereby, enabling the estimation of inducing points.

It is worth noting that a mixture of GP experts proposed in [21]

is also based on the same assumptions of statistical independence

of the latent variables given the inducing points. However, in this

model, experts are trained on and responsible for disjoint subsets of

the inputs. Discontinuities and possible inaccurate predictions may

arise near expert boundaries due to the lack of extrapolation between

different experts. Our model uses a different philosophy where a

gating network probabilistically assigns points to the experts, and

thus maintains a smooth transition between different experts.

2. MODEL SPECIFICATION

Consider a dataset D consisting of input data, X=((x1)
T, ..., (xN )T)T

with input points (row vectors) xi ∈ X ⊂ R
D , and outputs
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y=(y1, ..., yN )T. Our task is to compute the predictive distribution

of the output yt at test location xt. The proposed model, depicted

in Fig. 1, is essentially a Dirichlet process infinite mixture model in

which each component is composed of a Gaussian distribution over

the input space, and a GP expert over the output space.

Fig. 1. Graphical representation of the proposed model.

2.1. Gaussian process expert and input space model

Each GP expert k is associated with a latent function fk(x) ∼
GP(0, κk(x, x′)), where x, x′ ∈ X and κk(x, x′) is the kernel func-

tion of the expert. The expert is also augmented with a set of M in-

ducing points {u
(k)
1 , ..., u

(k)
M }⊂X . They are collectively represented

in matrix form by Uk=((u
(k)
1 )T, ..., (u

(k)
M )T)T. We denote the latent

function values at the training inputs and inducing points for expert

k by fk=(f(x1), ..., f(xN ))T and gk=(f(u
(k)
1 ), ..., f(u

(k)
M ))T , re-

spectively. For each observation (xn, yn), we have a corresponding

latent variable zn indicating to which expert it belongs. Following

the standard Gaussian process regression, we assume the observed

outputs are given by: yn = fzn(xn) + ǫn, where ǫn ∼ N (0, σ2
zn).

For each expert, the latent values are assumed to be independent

given the inducing latent values gk, i.e.

p(fk|X, gk,Uk,θk) =
∏N

n=1p(fk(xn)|xn, gk,Uk,θk), (1)

where θk is the hyperparameters for the kernel function κk(x, x′).
Here, p(fk(xn)|xn, gk,Uk,θk) is the predictive normal distri-

bution of latent value fk(xn) given gk with mean f̄k(xn) =
K(xn,Uk)K(Uk,Uk)

−1gk, and variance Λk(xn) = κk(xn, xn) −
K(xn,Uk)K(Uk,Uk)

−1K(Uk, xn):

p(fk(xn)|xn, gk,Uk,θk) = N (fk(xn)|̄fk(xn),Λk(xn)), (2)

where K(A,B) denotes the covariance matrix evaluated at all pairs

of points in A and B. The covariance matrices involving Uk are

parameterized by the kernel hyperparameters θk of expert k.

Notice that based on the independence assumption given in

Eq. (1) and the predictive distribution in Eq. (2), each of our GP

experts alone is a sparse GP model which corresponds to the fully

independent training conditional (FITC) model described in [25].

The input space for each expert is modeled by a Gaussian dis-

tribution, i.e., p(x|z = k,µk,Rk) = N (x|µk,R−1
k ), where Rk

is the precision matrix. The parameters µk and Rk are governed re-

spectively by a Gaussian distribution prior and a Wishart distribution

prior: µk ∼ N (µ0,R−1
0 ) and Rk ∼ W(W0, v0).

2.2. Dirichlet process mixture model

Traditional mixture models require the number of experts to be spec-

ified a priori for a particular dataset, which may be a difficult model

selection problem. Therefore, following [17, 19, 22], we avoid this

problem by using an infinite number of experts for our model. In

particular, a Dirichlet process (DP) prior [27] is placed over the ex-

perts to allow the model to automatically determine the number of

components. To facilitate variational inference, the stick-breaking

representation for DP mixtures [28] is adopted as proposed in [29].

Let πk be the mixing proportion of the mixture component k.

The variable zn can be regarded as following a multinomial distri-

bution prior with parameters π={π1, ..., π∞}, i.e. p(zn=k)=πk. In

stick-breaking construction, instead of sampling an infinite dimen-

sional parameter π directly, the proportions πk are given by

πk = vk ·
∏k−1

i=1 (1− vi) , (3)

where vk’s are independent random variables following Beta (1, α0).

2.3. Joint distribution of the model

Let v, µ, R, f, g, U, θ, σ and z be the set of all vk, µk, Rk, fk,

gk, Uk, θk, σk and zn, respectively. The hidden variables Ω in our

model include the parameters v, µ and R, and the latent variables f,

g and z. U, θ and σ constitute the hyperparameter set Θ of the GP

experts that need to be learned, while α0, W0, v0, m0 and R0 are

the generic hyperparameters that can be easily fixed. The full joint

distribution of the model p(D,Ω|Θ) is given by:

p(D,Ω|Θ) = p(y|f, z,σ)p(f|g,X,U,θ)p(g|U,θ)
p(X|z,µ,R)p(z|v)p(v)p(µ)p(R),

(4)

where p(v) =
∏∞

k=1 p(vk), p(µ) =
∏∞

k=1 p(µk), p(R) =
∏∞

k=1 p(Rk), and other components are as follows:

p(y|f, z,σ)=
∏N

n=1

∏∞
k=1N (yn|fk(xn), σ

2
kI)[zn==k], (5)

p(g|U,θ)=
∏∞

k=1N (gk|0,K(Uk,Uk)), (6)

p(X|z,µ,R)=
∏N

n=1

∏∞
k=1N (xn|µk,R−1

k )[zn==k], (7)

p(z|v)=
∏N

n=1p(zn|v)=
∏N

n=1

∏∞
k=1(1− vk)

[zn>k]v
[zn==k]
k , (8)

p(f|g,X,U,θ)=
∏∞

k=1p(fk|X, gk,Uk,θk), (9)

with p(fk|X, gk,Uk,θk) given in (1).

Eq. (5) follows from the standard noise model of GP regression

as described above. Eq. (6) is due to the assumption of independence

among the experts and applying GP prior at the inducing points for

each expert, Eq. (7) follows from the Gaussian distribution over the

input space of each expert, and Eq. (8) is the result of Eq. (3).

3. INFERENCE

The inference problem for our model involves estimating the pos-

terior distribution of hidden variables, p(f, g, z, v,µ,R|D,Θ), and

fixing the hyperparameters Θ. To this end, we use variational EM

algorithm which iterates two steps. In the E-step, variational infer-

ence is used to optimize variational parameters of the posterior dis-

tribution for hidden variables while keeping Θ fixed. In the M-step,

Θ is selected to maximize a lower-bound of the marginal likelihood.

3.1. Variational inference

In this section, we discuss the variaional inference that constitutes

the E-step of the algorithm. This is done by approximating the true

posterior p(f, g, z, v,µ,R|D,Θ) with a tractable family of distribu-

tions q(f, g, z, v,µ,R) that factorizes over fk, gk, Rk, µk, vk and

zn. The infinite number of variables Rk, µk and vk does not allow

variational inference. To enable variational inference, we approx-

imate the posterior Dirichlet process by a truncated stick-breaking

representation as proposed in [29]. A value T is chosen such that

q(vT=1)=1. In this way, the mixture proportions πk become zero

for k>T ; and the number of mixture components is limited to T .

As discussed in [29], the truncation level T is not a part of the prior

model specification, but a variational parameter which can be freely

set without fear of over-fitting. We subsequently use the follow-

ing factorized family of variational distributions q(f, g, z, v,µ,R)=
∏T

k=1 q(fk)q(gk)q(Rk)q(µk)
∏T−1

k=1 q(vk)
∏N

n=1 q(zn). Since the

variables fk(xn) are independent given gk, it is reasonable to further

assume: q(fk) =
∏N

n=1 q(fk(xn)). Let Eω(A) denote the expec-

tation of A over variational distribution q(ω) of hidden variable ω,

and K
(k)
u denote K(Uk,Uk). The optimal approximate distributions

for the hidden variables are obtained as follows.

a) q(vk) = Beta(αk1 + 1, αk2 + α0),
where αk1 =

∑N

n=1 q(zn = k) and αk2 =
∑N

n=1 q(zn > k).
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b) q(µk) = N (µ̄k,Vk),

where Vk =
(

R0 +
∑N

n=1 q(zn = k)ERk
(Rk)

)−1

and

µ̄k = Vk(R0µ0 +
∑N

n=1 q(zn = k)ERk
(Rk)xn).

c) q(Rk) = W(W̌k, v̌k),
where (W̌k)

−1 = (W0)
−1 +

∑N

n=1 q(zn = k) and

v̌k =
∑N

n=1 q(zn = k)Eµk

[

(xn − µk)(xn − µk)
T
]

.

d) zn follows a multinomial distribution: q(zn=k)= rnk, where

rnk=ρnk/
∑T

i=1ρni is the responsibility of expert k for xn and

ln ρnk = const + Evk (ln vk) +
∑k−1

i=1 Evi(ln(1− vi))

+ (1/2)[ERk
(ln |Rk|)− E{Rk,µk}((xn − µk)

T
Rk(xn − µk))]

+ lnN (yn|Efk (fk), σ
2
k). (10)

e) q(gk)=N
(

K
(k)
u Υ

−1
k K(Uk,X)Λk(X)−1

Efk(fk),K
(k)
u Υ

−1
k K

(k)
u

)

,

(11)

where Υk = K
(k)
u + K(Uk,X)Λk(X)−1

K(X,Uk), and (12)

Λk(X) = diag([Λk(x1), ...,Λk(xN )]). (13)

f) q(fk(xn)) = N (mk(xn), τk(xn)) (14)

where τk(xn) =
{

(Λk(xn))
−1 + σ−2rnk

}−1
, and

mk(xn)=τk(xn){Λk(xn)
−1

K(xn,Uk)(K
(k)
u )−1

E(gk)+σ−2rnkyn}.

3.2. Learning the hyperparameters

Given the variational distribution q(Ω) found in E-step, the hyper-

paremter set Θ can be learned by maximizing the following lower

bound L1(Θ) of the log marginal likelihood ln p(D|Θ):

L1(Θ) = EΩ ln p(D,Ω|Θ)

= E{f,z}(ln p(y|f, z,σ)) + E{f,g}(ln p(f|g,X,U,θ))

+ Eg(ln p(g|U,θ)) + const. (15)

The above framework is effective to learn the hyperparameters θ and

σ. However, due to the tight coupling between g and the inducing

points U, learning U by maximizing L1(Θ) while keeping q(g) fixed

is computationally difficult as it can be vulnerable to local optima.

In this paper, we propose to learn both the hyperparameters and the

inducing points through maximizing a KL-corrected bound.

The log marginal likelihood can be written as

ln p(D|Θ) = ln

∫

p(D|g,Θ)p(g|Θ)dg. (16)

Let Ω̌ be the set of all hidden variables, except g. We derive the

following lower bound for ln p(D|g,Θ) in terms of q(Ω̌):

L(Θ) = EΩ̌[ln p(D, Ω̌|g,Θ)] + const

= Ef,z [ln p(y|f, z,σ)] + Ef [ln p(f|g,X,U,θ)] + const, (17)

Replacing p(D|g,Θ) in Eq. (16) with exp(L(Θ)) leads to the KL-

corrected bound of the log marginal likelihood:

L2(Θ) = ln

∫

exp (Ef [ln p(f|g,X,U,θ)]) p(g|Θ)dg

+ Ef,z [ln p(y|f, z,σ)] + const, (18)

The first integral of L2(Θ) can be calculated as follows:

ln

∫

exp (Ef [ln p(f|g,X,U,θ)]) p(g|Θ)dg (19)

=
T
∑

k=1

{

ln

∫

exp (Efk [ln p(fk|gk,X,Uk,θk)]) p(gk|Uk,θk)dgk

}

,

=
T
∑

k=1

{

lnN
(

mk(X)|0,Qk +Λk(X)
)

−
1

2
Tr

(

Λk(X)−1
τk(X)

)

}

,

where τk(X) = diag([τk(x1), ..., τk(xN )]),

Qk = K(X,Uk)(K
(k)
u )−1

K(Uk,X); (20)

and the following expression has been used:

Efk [ln p(fk|gk,X,Uk,θk)] = (21)

lnN
(

mk(X)|K(X,Uk)(K
(k)
u )−1

gk,Λk(X)
)

−
1

2
Tr

(

Λk(X)−1
τk(X)

)

.

The remaining term of the bound L2(Θ) is given by:

Ef,z [ln p(y|f, z,σ)] (22)

=−
1

2

T
∑

k=1

{

N
∑

n=1

rnk

{

ln |σ2
k|+ σ−2

k

(

(yn − mk(xn))
2 + τk(xn)

)}

}

.

It has been proven in [26] that the new bound L2(Θ) is an upper

bound of the traditional bound L1(Θ). In fact, if we subtract L1(Θ)
from L2(Θ), the result takes on the form of a Kullback-Leibler di-

vergence, hence the name KL-corrected bound. L2(Θ) is therefore

guaranteed to converge and converges even faster than L1(Θ). In

addition, it does not directly depend on q(g). Hence, both the hyper-

paramters and the inducing points can be learned through maximiz-

ing this bound without fear of being trapped in local optima.

Once the model has been trained, the predictive distribution for

an unseen data point x∗ is estimated as

p(y∗|x∗, Ω̄,Θ) =
∑T

k=1p(z∗ = k|x∗, Ω̄)p(y∗|x∗, z∗ = k, Ω̄,Θ),

where Ω̄ denotes the variational means of the hidden variables.

3.3. Truncating the experts

In the current inference procedure, each expert is jointly responsible

for every data point, i.e. basically the responsibility rnk > 0, for

most n ∈ {1, ..., N} and k ∈ {1, ..., T}. As a result, the time com-

plexity related to the inference of each expert is O(NM2), which

mainly arises from the computation of Υk in (12) , and the inversion

of the matrix Qk + Λk in the M-step. The memory complexity is

O(NM) due to the storage of the matrix K(Uk,X).
However, it can be noticed that the values of most rnk are

small. When rnk is small, the contribution of expert k in ex-

plaining data point xn is not valuable and may otherwise add

noise to the inference. To save time and memory spent on those

points, we propose to truncate the range of responsibility of each

expert through thresholding rnk. In particular, we set rnk to 0 if

rnk < βmax([rn1, ..., rnT ]), for a chosen value of β. After that, in-

ference related to each expert k involves only those points xn whose

corresponding rnk is greater than 0. Let Xk, yk and f́k be the sets

of inputs, outputs and latent variables at such points, respectively.

Subsequently, X, y and fk in Eqs. (11), (12), (13), (19), (20), (21)

and (22) are replaced with Xk, yk and f́k, respectively. Since the in-

tersection among the sets Xk becomes small, the average size of Xk

is approximately N/T . The time complexity related to the inference

of each expert is reduced to O(NM2/T ) in M-step, but remains

O(NM2) in the E-step due to the calculation of rnk in Eq. (10).

The overall complexity for the inference is O(TNM2) in time and

O(NM/T ) in memory. Compared to the traditional sparse GP with

the same number of inducing points, i.e., B =M×T , our models

can possibly run T times faster and use T 2 times less memory.

4. EXPERIMENTS AND RESULTS

We present two sets of experiments with datasets of varying size to

analyze different aspects of our models. The parameter settings, and

the experimental setup and environment are given below.

Generic hyperparameter setting: As mentioned previously, our

proposed model has a few generic hyperparameters {α0,W0, v0,m0,
R0} that are set as follows. m0, R0 and v0 are set to the mean µx,

the inverse covariance Rx and the dimensionality d of the training

input, respectively. W0 is set to Rx/d, and α0 is set to 10−2.

Experimental setup and environment: We use the squared

exponential (SE) kernel with automatic relevance determination

(ARD) in all experiments. Hyperparameters are optimized using the
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Table 1. Test results of the proposed method, FITC, local-FITC and FPG on the four benchmark data sets. Results are the averages over 5

trials, along with the standard deviation. The best performances are given in bold.
kin40k pumadyn32nm chem synth8 sarcos

S
M

S
E

Proposed method 0.0406 (± 0.0020) 0.0457 (± 0.0006) 0.1034 (± 0.0016) 0.2507 (± 0.0035) 0.0153 (± 0.0003)
FITC 0.0540 (± 0.0013) 0.0462 (± 0.0015) 0.1398 (± 0.0091) 0.2468 (± 0.0165) 0.0183 (± 0.0012)

Local-FITC 0.0612 (± 0.0032) 0.0505 (± 0.0045) 0.1190 (± 0.0038) 0.2676 (± 0.0221) 0.0165 (± 0.0018)
FGP 0.0643 (± 0.0051) 0.0568 (± 0.063) 0.1117(± 0.0072) 0.2649(± 0.0151) 0.0162 (± 0.0023)

M
S

L
L

Proposed method -2.0828 (± 0.0024) -1.5363 (± 0.0256) -1.9880 (± 0.0542) -0.8689 (± 0.0264) -2.4475 (± 0.0005)
FITC -2.0782 (± 0.0224) -1.5353 (± 0.0232) -2.1630 (± 0.0442) -0.9049 (± 0.0383) -2.1852 (± 0.0070)

Local-FITC -1.9439 (± 0.0128) -1.4728 (± 0.0194) -2.0134 (± 0.0448) -0.8400 (± 0.0134) -2.3964 (± 0.0065)
FGP -2.0163 (± 0.0124) -1.4916 (± 0.0209) -1.7348 (± 0.0352) -0.8095 (± 0.0214) -2.3674 (± 0.0026)

T
ra

in
in

g

ti
m

e
(s

) Proposed method 1369 (± 33) 2380(± 69) 6054 (± 50) 4497(± 30) 9173 (± 631)
FITC 5175 (± 52) 6994 (± 86) 16985 (± 312) 14528 (± 321) 51030 (± 643)

Local-FITC 1354 (± 31) 2651 (± 57) 7438 (± 73) 3914 (± 48) 9367 (± 454)
FGP 1012 (± 21) 2116 (± 43) 5355 (± 231) 3166 (± 127) 7726 (± 527)

conjugate gradients code in the GPML package with a maximum

of 500 iterations for experiments in Section 4.1 and 1000 iterations

for those in Section 4.2. The input and target in each data set are

normalized to have zero mean. Each experiment is carried out on a

Intel(R) Core(TM) i7-4770 3.47GHz CPU with 8GB of RAM using

MATLAB R2014a.

4.1. Experiments on medium-size datasets

First we evaluate the performance of our model on a wide range of

medium-size benchmark datasets including: kin40k (8 dimensions,

10000 training, 30000 test), pumadyn32nm (32 dimensions, 7168

training, 1024 test) 1, chem (15 dimensions, 31535 training, 31536

test), synth8 (8 dimensions, 30543 training, 30544 test), and sarcos

(21 dimensions, 44484 training, 4449 test) 2. We use the same train-

ing /test splits as in [30], [21] and [31].

We compare our method with three different baselines. The first

one is the FITC approximation [25]. The second baseline is local-

FITC in which the training data is divided into T clusters and a FITC

model is separately trained on each cluster. According to the ex-

periment results presented in [21], local-FITC typically achieves its

best performance when random clustering is used to partition the

dataset as compared to using k-means or recursive projection clus-

tering [31]. Therefore, we use local-FITC with random clustering

in our experiments. The third baseline is the mixture of GP experts

(FGP) proposed in [21], which uses MAP assignment for expert allo-

cation. We set T = 2 experts for our method, local-FITC and FGP.

To compare the performance of these baselines based on the same

time complexity, we choose the number of inducing points for them

as follows. Both our method and FGP use M = 500 inducing points

per expert, i.e. 1000 inducing points in total. Local-FITC uses 700
inducing points per expert while FITC uses a total of 700 inducing

points. We run each method 5 times. Each run is started with differ-

ent random seeds. The results are then averaged over 5 runs to obtain

the predictive performance and training time shown in Table 1. The

performance is evaluated in terms of the standardized mean squared

error (SMSE) and mean standardized log loss (MSLL).

First, we observe that our method, local-FITC and FGP take

about the same amount of time for training given the settings de-

scribed above, while FITC requires much longer time. Second, our

method has lower SMSE and MSLL than the other methods in most

of the datasets including kin40k, pumadyn32nm, chem and sarcos.

For chem dataset, FITC produces a lower MSLL than our method

does, i.e. it is more confident about its prediction. However, this

confidence cannot justify its very poor accuracy (high SMSE). Our

method loses to FITC in synth8 dataset but the difference in their

performances is small.
1Available from http://www.cs.toronto.edu/ delve/data/datasets.html
2Available from http://homepages.inf.ed.ac.uk/ckiw/code/gpr approx.html

4.2. Experiments on big dataset

Next we evaluate our model on the Million Song dataset [32]. We

use the exact split as in [21], which comprises 105 songs for train-

ing and 51630 songs for testing. Each song has 90 acoustic features

based on which its year of release is to be predicted. As argued

in [21], when dealing with such a large dataset on a single machine,

the choice regarding the sparsity and computational complexity of

the prediction models should be directed by the physical memory

limit of the benchmark computer. Given the memory complexity of

O(NM/T ) of our model, we set T = 20 experts and M = 300
inducing points per expert. The performance of our method together

with those of four other methods are shown in Table 2 for compar-

ison. Results are the averages over 5 runs, along with the standard

deviation. The performance is evaluated in term of SMSE and the

negative log predictive density (NLPD).

In Table 2, GPSVI2000 denotes the FITC with stochastic vari-

ational inference [33], which uses B = 2000 inducing points.

SOD2000 is the standard GP regression model in which a subset of

B = 2000 data points is randomly sampled for training. The choice

of B = 2000 for GPSVI and SOD is due to their memory complex-

ity of O(B2). FGP and local-FITC are assigned the same number

of inducing points and experts as our method. The performance for

FGP, GPSVI2000, Local-FITC and SOD2000 were directly quoted

from [21]. It can be clearly seen that our method gives the best

performance among the compared methods.

Table 2. Performance of the models on the Million Song dataset.

The best performances are given in bold.
METHOD SMSE NLPD

Proposed method 0.706 (± 0.003) 3.55 (± 0.03)

FGP 0.715 (± 0.003) 3.59 (± 0.01)

GPSVI2000 0.724 (± 0.003) 3.64 (± 0.01)

Local-FITC 0.761 (± 0.009) 3.63 (± 0.03)

SOD2000 0.794 (± 0.011) 3.69 (± 0.01)

5. CONCLUSION

We have presented a new mixture of GP experts model based on

sparse GP approximation and variational inference. The proposed

model nicely addresses the two issues in the existing variational mix-

tures of GP experts, namely the degeneracy and inducing point learn-

ing. First, our model uses a FITC-like sparse approximation for each

expert, therefore, it does not suffer from the degeneracy problem

that happens to the models that use linear approximation. Second,

the KL-corrected bound used in our model leads to faster variational

learning of both the inducing points and hyperparameters of the GP

experts. Experiments on benchmark datasets showed the enhanced

predictive power of our model compared to the traditional sparse GP

models and many existing mixtures of GP experts.
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