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ABSTRACT

Decision making based on Markov decision processes (MDPs)

is an emerging research area as MDPs provide a convenient

formalism to learn an optimal behavior in terms of a given re-

ward. In many applications there are critical states that might

harm the agent or the environment and should therefore be

avoided. In practice, those states are often simply penalized

with a negative reward where the penalty is set in a trial-and-

error approach. For this reason, we propose a modification

of the well-known value iteration algorithm that guarantees

that critical states are visited with a pre-set probability only.

Since this leads to an infeasible problem, we investigate the

effect of nonlinear and linear approximations and discuss the

effects. Two examples demonstrate the effectiveness of the

proposed approach.

Index Terms— Markov decision process, Risk, Decision

making, Constrained optimization, Reinforcement Learning

1. INTRODUCTION

Decision making plays a crucial role in many applications to-

day, e.g. in stock trading [1, 2], driving assistance [3, 4, 5],

or communication [6, 7, 8, 9]. These problems can often be

formulated as Markov decision processes (MDP) which pro-

vide a powerful statistical framework. Many algorithms have

been developed to solve MDPs, e.g. value iteration [10] or

Q-learning [11]. A key element of MDPs is the so-called re-

ward function which provides the agent with rewards for a de-

sired behavior. However, in practical applications it is often

desired to avoid certain states which might harm the agent or

its environment. This is especially important for robot control

(e.g. avoidance of critical situations [12]) or driver assistance

(e.g. collision avoidance [13]).

A simple solution is to penalize such states by providing

(high) negative rewards. Though the agent will finally, after

learning, attempt to avoid those states, this method raises two

questions: firstly, what value should the penalty take? If the

penalties are too high, they might distract the agent from the

true target. Secondly, how certain is it that those states are

really avoided? Considering the fact that the agent is acting

in a stochastic environment, it is likely that the critical states

cannot completely be avoided and, therefore, a quantifiable

measure that can easily be interpreted is required which in-

forms how likely it is that the agent is in a critical state.

In the reinforcement learning community the term risk is

often related to the variance of the expected return [14, 15,

16]. Here, it is desired to obtain a value function that is invari-

ant to small changes of the policy. In contrast, we define the

term risk as the probability of visiting an undesired, critical

state at any point in time similar to Geibel and Wysotzki [17].

They assume that the risk states are terminal states, meaning

that the agent cannot recover and the process terminates. This

allows them to formulate the problem of estimating the risk

probabilities as another MDP. At the same time, they estimate

the value function of the original MDP. Using a weighted sum

of the risk and the original value function, the policy is esti-

mated. A significant drawback of the algorithm in [17] is

that the weight is a priori unknown and has to be searched

for. Consequently, the MDPs have to be solved several times,

leading to high computational costs. Further, this algorithm

cannot be used in applications where the visit of a critical

state does not lead to a termination of the process.

We propose the use of a standard value iteration algorithm

whose maximization step is constrained to guarantee that the

probability of visiting a critical state is below a pre-set thresh-

old at any point in time. As this leads to an infeasible opti-

mization problem with an infinite number of constraints, we

present an approximation that can be solved by means of a

nonlinear program. We further explain in which scenarios a

linear approximation, similar to constrained MDPs (CMDP)

[18, 19, 20], is useful. In contrast to [17], we only need to

solve the MDP once, rendering this approach attractive for

large state and action spaces. Further, we do not require crit-

ical states to be terminal states. In summary, our approach

to control the risk is suitable if the problem at hand has the

following properties:

• critical states are potentially unavoidable due to the

stochastic nature of the system (e.g. failure of an en-

gine) and are not necessarily terminal states

• there is usually more than one possibility to reach a goal
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(otherwise the problem might be unsolvable)

• risk is not directly quantifiable as a cost (e.g. injury of

people or failure of a machine)

In Section 2, we briefly revisit the Markov decision process as

the underlying framework of the proposed algorithm. In Sec-

tion 3, the problem is formulated and solutions are presented.

The simulations in Section 4 demonstrate the performance of

the proposed approach, before concluding.

2. MARKOV DECISION PROCESSES

A finite MDP with an infinite horizon is defined by

• a finite set of N states, S = {s(1), s(2), . . . , s(N)}
• a finite set of M actions, A = {a(1), a(2), . . . , a(M)}
• the initial state distribution P (s0)
• the transition probability P (s′|s, a) with s′ ∈ S
• the discount factor γ ∈ [0, 1)
• the reward function R : S × A → ❘ with absolute

value bounded by Rmax ∈ ❘
The transition probability P (s′|s, a) describes the probability

of ending up in state s′ when taking action a in state s. Thus, it

provides information, for example, about the probability that

the agent successfully performs an action or the agent ends up

in a certain state due to system dynamics and plays therefore

a crucial role for risk estimation.

In decision making, the goal is to find an action that max-

imizes the expected discounted return or value V (s) for each

state,

V (s|π) = E[R(st=0) + γR(st=1) + γ2R(st=2) + . . . |π],

i.e. to find an optimal policy π, π : S → A. The ex-

pected return informs the agent about the collected reward

to expect when acting according to the policy at time steps

t = 0, 1, 2, . . . and can be estimated by means of the Bellman

equations [10, 21].

Though it has been shown that a deterministic policy as

described above is optimal in many decision making prob-

lems [22], we assume the policy to be stochastic in the se-

quel, i.e. the decision maker chooses an action with a certain

probability. This will be justified in Section 3.1. Since we

consider finite state and action spaces, we model the policy π

as a categorical distribution, i.e.

π := Pθ(a|s) =

|A|∏

i=1

|S|∏

j=1

θ
1(ai,a)1(sj ,s)
ij

with parameters θij , 0 ≤ θij ≤ 1, i = 1, . . . ,M , j = 1, . . . , N .

3. RISK-SENSITIVE DECISION MAKING

In the context of decision making, we define the term ‘risk’

as the probability of visiting a critical state s(c) ∈ Sc for each

time step where Sc denotes the set of critical states. Our aim

is to make sure that the probability of the agent being in a

critical state is below some pre-set threshold α for all time

steps t, t = 1, 2, . . ., assuming this is already fulfilled for the

initial state distribution P (s0). Thus, we ideally consider the

entire life span of the system.

The probability of visiting a certain state during time step

t can be recursively computed given the policy following the

Markov chain,

Pθ(st+1) =
∑

st∈S

∑

at∈A

P (st+1|st, at)Pθ(at|st)P (st). (1)

Assuming that the critical states are always terminal states,

the recursive structure can be exploited to derive a Q-learning

based-scheme to calculate the probabilities of the critical

states [17]. In contrast, we propose to constrain the maxi-

mization of the value-function V (s) directly, since we want

to make sure that, for any time step t, the risk of entering a

critical state is bounded by the pre-set threshold α. In the

infinite horizon case, i.e. when the process does not termi-

nate, the maximization problem has then an infinite number

of constraints,

max
π

V (s|π) s.t.

Pθ(st = s(c)) ≤ α ∀s(c) ∈ Sc, t = 1, 2, . . .

and is therefore infeasible to solve. An algorithm for finding

an approximate solution to this problem is presented in the

sequel.

3.1. Risk-bounded value iteration

The proposed algorithm is basically a modification of the

well-known value iteration algorithm. In principle, any value-

based RL algorithm (such as Q-learning) can be modified to

consider risks as defined in Section 3. Since we assume that

the transition probability is known, value iteration is most

appealing due to its simplicity and effectiveness.

The key idea is to exploit the Bellman-Equations, which

allow to iteratively estimate the expected return. Each iter-

ation contains two steps. In the first step, as in value itera-

tion, the state-action value-function Q(s, a) is estimated for

all state and action pairs by adding the expected discounted

return of the neighboring states,

Q(s, a)←R(s, a) + γ
∑

s′∈S

P (s′|s, a)V (s′)

∀ s ∈ S, a ∈ A,

i.e. we assume V (s) to be known and estimate the expected

return for a single time step.

In the second, step we seek for an optimal probability dis-

tribution over the actions for each state. Here, the consider-

ation of the risk comes into play: we aim at maximizing the

state-action value function such that the risk is bounded by
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Fig. 1: Results of the robot navigation example. (a) Using standard value iteration, the probability of the risk is rather high.

Considering only the first-order constraints, the risk is significantly reduced but still exceeds the requested threshold. (b)

Avoiding critical states leads to a reduction of the expected return. The fluctuations in the range from 20 to 70 iterations are

caused by numerical issues of the solver.

the threshold α and, thus, obtain an update of V (s). This is

formulated as a constrained optimization problem:

max
θ

∑

s∈S

∑

a∈A

Q(s, a)Pθ(a|s)

s.t. Pθ(st = s(c)) ≤ α ∀s(c) ∈ Sc, t = 1, 2, . . .

(2)

If the underlying Markov chain is irreducible, Pθ(st = s(c))
will converge to the steady state distribution for t → ∞. In

this case, and if N is chosen sufficiently high, computing the

constraints up to order N , i.e. t ∈ [1, N ], yields a good ap-

proximation. Nonetheless, this problem is nonlinear due to

the constraints for t > 1 and is therefore difficult to solve.

In standard value iteration, it has been shown that a de-

terministic policy is optimal [22]. This does not hold for the

constrained problem as can be seen in Eq. (2). Here, we allow

the agent to choose actions leading to critical states as long as

the constraints are fulfilled and those states result in higher

rewards. However, we are able to limit the risk by reducing

the probability of taking these actions. In contrast, if a deter-

ministic policy was chosen, the agent would always have to

perform the safer actions, leading to a potentially much lower

expected return.

3.2. Linear approximation: first-order constraint

In many applications, it is desired to avoid critical states.

Thus, the threshold α will be set rather low such that the agent

shall not be directed to risk state, i.e. the policy is pointing

to some other state. This can be achieved by fulfilling the

first order constraints, i.e. P (s1 = s(c)) ≤ α ∀s(c) ∈ Sc.

Consequently, ending up in a critical state can only be caused

by system dynamics or unexpected behavior of the system.

In this scenario, we can avoid the expensive nonlinear op-

timization since the problem in Eq. (2) becomes linear and

can easily be solved by a linear program. Thus, we even ob-

tain a globally optimal solution.

4. SIMULATIONS

To show the effects of different orders N , we consider two

examples. The first example is based on the well-known grid-

world [21]. The second one investigates the effect in a highly

dynamical environment.

4.1. Robot navigation

Consider a robot moving in a maze. The states are given by

the location of the robot and its possible actions are mov-

ing east, west, north or south. We assume a non-ideal robot,

meaning that with a probability of 20%, it randomly ends up

in a neighboring state instead of the intended one. Whenever

an action leads to hitting a wall, it will remain in the current

state. Since a navigation problem is simulated, we place a

positive reward (+1) in the center of the maze as indicated by

the green field in Fig. 2, otherwise the reward is zero. The

initial state distribution is uniform.

(a) Standard (b) N = 1 (c) N = 100

Fig. 2: Policies for the robot example. Only the action maxi-

mizing P (a|s) is shown for each state.

We require that the probability of visiting critical states

indicated by the red color in Fig. 2 should not exceed the

threshold α = 1%. Fig. 1a shows that using order N = 100
ensures that the risk is not exceeded. The first-order approxi-

mation exceeds the threshold slightly, but the estimated risk is
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Fig. 3: Results of the machine example. (a) Only by means of high order constraints it is possible to guarantee low risks close

to the desired threshold. (b) Though the risk is significantly reduced using the risk-sensitive approaches, the expected return

only slightly decreases.

still much lower than that of standard value iteration. Avoid-

ing risk states reduces the expected return significantly as de-

picted in Fig. 1b. As shown in Fig. 2a, the standard value iter-

ation algorithm does not avoid the critical states and finds the

shortest path to the reward and has therefore the highest ex-

pected return and risk. The first-order risk-sensitive algorithm

circumvents the critical states but finds the reward nonetheless

(Fig. 2b). With order N = 100, the risk threshold is met and

the policy directs the agent opposite of many critical states

(Fig. 2c).

4.2. Machine replacement

In this example, we are interested in estimating the optimal

point in time for replacing a machine that produces goods

worth 100 per time step. However, the probability of failure

during the production of an item grows exponentially with

time, while the initial probability of failure is 10%. The cost

of replacing the machine is 30. We formulate this problem as

an MDP, where the state space is defined by the age of the ma-

chine and the number of items produced (successful or failed)

and the initial state distribution is uniform. Two actions can

be taken, either replacing (R) the machine or simply waiting

(-). When a machine is replaced, the age is reset to one and

the probability of success is 90% again. Otherwise, the age of

the machine will increase and an item might be produced. We

set γ = 0.9, i.e. we discount items produced at higher ages.

A failure of the machine is assumed to cause the entire

process chain to stop, leading to monetary loss and a loss of

trust by potential customers, making the cost of this failure

difficult to quantify. Thus, we define all states where no item

is produced as risk states (indicated in red color in Fig. 4)

and set the threshold to α = 2%. Fig. 4a shows that ac-

cording to the standard value iteration, the machine should be

replaced after six time steps. As depicted in Fig. 3a, the risk

exceeds the required threshold. The first-order approximation

also cannot fulfill the constraints. Only considering an order

N = 200 shows a risk that is in the range of the requested

bounds. Though the risk has been significantly reduced, the

expected returns only slightly decrease (Fig. 3a). The policies

of the risk-sensitive approaches show that the machine should

be earlier replaced - in case of the nonlinear one basically di-

rectly after the first time step, if no item has been produced.

Note that this example is particularly challenging in terms

of risk reduction, since the described system underlies strong

dynamics, meaning that the action of the agent has a compa-

rably small effect only. Thus, the required threshold on the

risk cannot be perfectly met.
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Fig. 4: Policies for the machine example. Only the action

maximizing P (a|s) is shown for each state.

5. CONCLUSION

We define the term risk as the probability of visiting a critical

state for every time step. Our aim was to derive an algorithm

that guarantees that the agent visits critical states with a prob-

ability less than a pre-set threshold, leading to an infeasible

problem with an infinite number of constraints. Thus, we have

provided insight to nonlinear and linear approximations and

presented an algorithm based on the well-known value itera-

tion algorithm. By means of two examples, we have shown

that these approximations lead to useful results. Especially

the linear approximation is fast to compute and provides good

results as long as the system dynamics lead the agent into crit-

ical states with a low probability only.
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