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Abstract— We consider a dictionary learning problem aimed at
designing a dictionary such that the signals admits a sparse or an
approximate sparse representation over the learned dictionary.
The problem finds a variety of applications including image
denoising, feature extraction, etc. In this paper, we propose a new
hierarchical Bayesian model for dictionary learning, in which a
Gaussian-inverse Gamma hierarchical prior is used to promote
the sparsity of the representation. Suitable non-informative priors
are also placed on the dictionary and the noise variance such
that they can be reliably estimated from the data. Based on the
hierarchical model, a Gibbs sampling method is developed for
Bayesian inference. The proposed method have the advantage
that it does not require the knowledge of the noise variance a
priori. Numerical results show that the proposed method is able
to learn the dictionary with an accuracy better than existing
methods.

Index Terms— Dictionary learning, Gaussian-inverse Gamma
prior, Gibbs sampling.

I. INTRODUCTION

Sparse representation has been of significant interest over
past few years and found a variety of applications in prac-
tice [1]–[3]. In many applications such as image denoising
and interpolation, signals often have a sparse representation
over a pre-specified non-adaptive dictionary, e.g. discrete
consine/wavelet transform (DCT/DWT) bases. Nevertheless,
recent research [4], [5] has shown that the recovery, denoising
and classification performance can be considerably improved
by utilizing an adaptive dictionary that is learned from training
signals [5], [6]. This has inspired studies on dictionary learning
aimed to design overcompelete dictionaries that can better
represent the signals. A number of algorithms, such as the
K-singular value decomposition (K-SVD) [4], the method
of optimal directions (MOD) [7], dictionary learning with
the majorization method [8], and the simultaneous codeword
optimization (SimCO) [9], were developed for overcomplete
dictionary learning and sparse representation. Most algorithms
formulate the dictionary learning as an optimization problem
which is solved via a two-stage iterative process, namely, a
sparse coding stage and a dictionary update stage. The main
difference among these algorithms lies in the dictionary update
stage. Specifically, the MOD method updates the dictionary via

This work was supported in part by the National Science Foundation of
China under Grant 61172114, and the National Science Foundation under
Grant ECCS-1408182.

solving a least square problem. The K-SVD algorithm, instead,
updates the atoms of the dictionary in a sequential manner and
while updating each atom, the atom is updated along with the
nonzero entries in the corresponding row vector of the sparse
matrix. The idea of sequential atom update was later extended
to provide sequential update of multiple atoms each time [9],
and recently generalized to parallel atom-updating in order to
further accelerate the convergence of the iterative process [10].
These methods [4], [7]–[10], although offering state-of-the-art
performance, have several limitations. Specifically, they may
require the knowledge of the sparsity level or the noise/residual
variance for sparse coding (e.g. [4]), or this knowledge is
needed for meticulously selecting some regularization param-
eters to properly control the tradeoff between the sparsity level
and the data fitting error (e.g. [8], [10]). In practice, however,
the prior information about the noise variance and sparsity
level is usually unavailable and an inaccurate estimation may
result in substantial performance degradation. To mitigate
such limitation, a nonparametric Bayesian dictionary learning
method called beta-Bernoulli process factor analysis (BPFA)
was recently developed in [11]. The proposed method is able to
automatically infer the required number of factors (dictionary
elements) and the noise variance from the test image.

In this paper, we propose a new hierarchical Bayesian
model for dictionary learning, in which a Gaussian-inverse
Gamma hierarchical prior is used to promote the sparsity of the
representation. Suitable non-informative priors are also placed
on the dictionary and the noise variance such that they can
be reliably inferred from the data. Based on the hierarchical
model, a Gibbs sampling method is developed for Bayesian
inference. Simulation results show that the proposed Gibbs
sampling algorithm has notable advantages over other state-of-
the-art dictionary learning methods in a number of interesting
scenarios.

II. HIERARCHICAL MODEL

Suppose we have L training signals {yl}Ll=1, where yl ∈
RM . Dictionary learning aims at finding a common sparsifying
dictionary D ∈ RM×N such that these L training signals
admit a sparse representation over the overcomplete dictionary
D, i.e.

yl = Dxl +wl ∀l (1)
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where xl and wl denote the sparse vector and the resid-
ual/noise vector, respectively. Define Y , [y1 . . . yL], X ,
[x1 . . . xL], and W , [w1 . . . wL]. The model (1) can
be re-expressed as

Y = DX +W (2)

Also, we write D , [d1 . . . dN ], where each column of the
dictionary, dn, is called an atom.

In the following, we develop a Bayesian framework for
learning the overcomplete dictionary and sparse vectors. To
promote sparse representations, we assign a two-layer hierar-
chical Gaussian-inverse Gamma prior to X . The Gaussian-
inverse Gamma prior is one of the most popular sparse-
promoting priors which has been widely used in compressed
sensing [12]–[14]. Specifically, in the first layer, X is assigned
a Gaussian prior distribution

p(X|α) =
N∏

n=1

L∏
l=1

p(xnl)

=
N∏

n=1

L∏
l=1

N (xnl|0, α−1
nl ) (3)

where xnl denotes the (n, l)th entry of X , and α , {αnl} are
non-negative sparsity-controlling hyperparameters. The second
layer specifies Gamma distributions as hyperpriors over the
hyperparameters {αnl}, i.e.

p(α) =

N∏
n=1

L∏
l=1

Gamma(αnl|a, b)

=
N∏

n=1

L∏
l=1

Γ(a)−1baαa−1
nl e−bαnl (4)

where Γ(a) =
∫∞
0

ta−1e−tdt is the Gamma function, and
the parameters a and b used to characterize the Gamma
distribution are chosen to be a = 0.5 and b = 10−6.

In addition, in order to prevent the dictionary from becom-
ing infinitely large, we assume the atoms of the dictionary
{dn} are mutually independent and each atom is placed a
normal Gaussian prior, i.e.

p(D) =
N∏

n=1

p(dn) =
N∏

n=1

N (dn|0, I) (5)

The noise {wl} are assumed independent multivariate Gaus-
sian noise with zero mean and covariance matrix (1/γ)I ,
where the noise variance 1/γ is assumed unknown a priori.
To estimate the noise variance, we place a Gamma hyperprior
over γ, i.e.

p(γ) = Gamma(γ|c, d) = Γ(c)−1dcγc−1e−dγ (6)

where we set c = 0.5 and d = 10−6. The proposed
hierarchical model provides a general framework for learning
the overcomplete dictionary, the sparse codes, as well as the
noise variance. In the following, we develop a Gibbs sampling
method for Bayesian inference.

III. PROPOSED SPARSE BAYESIAN DICTIONARY
LEARNING

We now proceed to perform Gibbs sampler for the proposed
hierarchical model. Let θ , {X,α,D, γ} denote all hidden
variables in our hierarchical model. We aim to find the
posterior distribution of θ given the observed data Y

p(θ|Y ) ∝ p(Y |D,X, γ)p(D)p(X|α)p(α)p(γ) (7)

To provide an approximation to the posterior distribution of the
hidden variables, the Gibbs sampler generates an instance from
the distribution of each hidden variable in turn, conditional
on the current values of the other hidden variables. It can be
shown (see, for example, [15]) that the sequence of samples
constitutes a Markov chain, and the stationary distribution of
that Markov chain is just the sought-after joint distribution.
Specifically, the sequential sampling procedure of the Gibbs
sampler is given as follows.

• Sampling X according to its conditional marginal distri-
bution p(X|Y ,D(t),α(t), γ(t));

• Sampling D according to its conditional marginal distri-
bution p(D|Y ,X(t+1),α(t), γ(t));

• Sampling α according to its conditional marginal distri-
bution p(α|Y ,D(t+1),X(t+1), γ(t));

• Sampling γ according to its conditional marginal distri-
bution p(γ|Y ,D(t+1),X(t+1),α(t+1)).

Note that the above sampling scheme is also referred to as a
blocked Gibbs sampler [16] because it groups two or more
variables together and samples from their joint distribution
conditioned on all other variables, rather than sampling from
each one individually. Details of this sampling scheme are
provided next. For simplicity, the notation p(z|−) is used
in the following to denote the distribution of variable z
conditioned on all other variables.

1). Sampling X: Samples of X can be obtained by inde-
pendently sampling each column of X , i.e. xl. The conditional
marginal distribution of xl is given as

p(xl|−) ∝ p(Y |X,D, γ)p(xl|αl)

∝ p(yl|D,xl, γ)p(xl|αl) (8)

where αl , {αnl}Nn=1 are the sparsity-controlling hyperpa-
rameters associated with xl, p(yl|D,xl, γ) and p(xl|αl) are
respectively given by

p(yl|D,xl, γ) =
( γ

2π

)M
2

exp

(
−γ∥yl −Dxl∥22

2

)
p(xl|αl) =

N∏
n=1

N (xnl|0, α−1
nl ) (9)

Substituting (9) into (8) and after some simplifications, it can
be readily verified that p(xl|−) follows a Gaussian distribution

p(xl|−) = N (µx
l ,Σ

x
l ) (10)

with its mean µx
l and covariance matrix Σx

l given by

µx
l = γΣx

l D
Tyl (11)

Σx
l = (γDTD +Λl)

−1 (12)
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where Λl , diag(α1l, . . . , αNl).
2). Sampling D: There are two different ways to sample

the dictionary: we can sample the whole set of atoms simul-
taneously, or sample the atoms in a successive way. Here, in
order to expedite the convergence of the Gibbs sampler, we
sample the atoms of the dictionary in a sequential manner. The
log-conditional distribution of dn can be written as

ln p(dn|−) ∝ ln p(Y |X, {dk}, γ)p(dn)

(a)
∝ ln p(Y −n|dn,xn·, γ)p(dn)

(b)
∝ 1

2
γtr{(Y −n − dnxn·)(Y

−n − dnxn·)
T }

+ dT
ndn

=
1

2

[
dT
n (γxn·x

T
n· + 1)−1dn − 2dnY

−nxT
n·

]
(13)

where in (a), we define

Y −n , Y −D−nX (14)

in which D−n is generated by D with the nth column of D
replaced by a zero vector, and xn· denotes the nth row of X ,
(b) comes from the fact that Y −n−dnxn· = W and thus we
have

p(Y −n|dn,xn·, γ) =
γ

ML
2

2π
exp

(
− 1

2
γ∥Y −n − dnxn·∥2F

)
(15)

Recalling (15), we can show that the conditional distribution
of dn follows a Gaussian distribution

p(dn|−) = N (µd
n,Σ

d
n) (16)

with its mean and covariance matrix given by

µd
n = γΣd

nY
−nxT

n· (17)

Σd
n = (γxn·x

T
n· + 1)−1I (18)

3). Sampling α: The log-conditional distribution of αnl can
be computed as

ln p(αnl|−) ∝ ln p(αnl; a, b)p(xnl|αnl)

∝
(
a− 1

2

)
lnαnl −

(
b+

x2
nl

2

)
(19)

It is easy to verify that αnl still follows a Gamma distribution

p(αnl|−) = Gamma(â, b̂nl) (20)

with the parameters â and b̂nl given as

â = a+
1

2
(21)

b̂nl = b+
1

2
x2
nl (22)

4). Sampling γ: The log-conditional distribution of γ is
given by

ln p(γ|−) ∝ ln p(Y |D,X, γ)p(γ)

∝ ln
L∏

l=1

p(yl|D,xl, γ)p(γ)

=

(
ML

2
+ c− 1

)
ln γ −

(
1

2
∥Y −DX∥2F + d

)
γ

(23)

from which we can arrive at

p(γ|−) = Gamma(ĉ, d̂) (24)

where

ĉ = a+
ML

2
(25)

d̂ = d+
1

2
∥Y −DX∥2F (26)

So far we have derived the conditional marginal distribu-
tions for hidden variables {D,X,α, γ}. Gibbs sampler suc-
cessively generates the samples of these variables according
to their conditional distributions. After a burn-in period, the
generated samples can be viewed as samples drawn from the
posterior distribution p(X,D,α, γ|Y ). With those samples,
the dictionary can be estimated by averaging the last few
samples of the Gibbs sampler. For clarity, we now summarize
the Gibbs sampling algorithm as follows.

Sparse Bayesian Dictionary Learning

1. Given the current samples D(t), α(t) and γ(t). Gen-
erate a sample X(t+1) according to (10).

2. Given the current samples X(t+1), α(t) and γ(t).
Generate a sample D(t+1) according to (16).

3. Given the current samples D(t+1), X(t+1) and γ(t).
Generate a sample α(t+1) according to (20).

4. Given the current samples D(t+1), X(t+1) and
α(t+1). Generate a sample γ(t+1) according to (24).

5. Repeat the above steps and collect the samples after
a burn-in period.

IV. SIMULATION RESULTS

We now carry out experiments to illustrate the performance
of our proposed sparse Bayesian dictionary learning (SBDL)
method. Throughout our experiments, the parameters for our
proposed method are set equal to a = 0.5, b = 10−6, c = 0.5
and d = 10−6. We compare our proposed methods with other
several existing state-of-the-art dictionary learning methods,
namely, the K-SVD algorithm [4], the atom parallel-updating
(APrU-DL) method [10], and BPFA [11]. In our experiment,
the parameters used in APrU-DL were tuned carefully and the
best performances were reported.

We first consider to recover a known dictionary from
samples. We generate a dictionary D of size 20 × 50, with
each entry independently drawn from a normal distribution.
Columns of D are then normalized to unit norm. The training
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TABLE I
RECOVERY SUCCESS RATES

L SNR Algorithm K = 3 K = 4 K = 5 Var. K

1000

10

K-SVD 80.52 36.36 2.52 0.80
BPFA 76.76 57.12 22.56 43.32

APrU-DL 85.64 64.40 33.44 53.68
SBDL 91.52 62.48 6.32 41.80

20

K-SVD 93.20 93.44 92.08 84.68
BPFA 87.96 92.00 94.08 93.58

APrU-DL 94.04 93.32 87.76 93.48
SBDL 99.64 99.16 97.52 99.12

30

K-SVD 94.24 94.32 93.92 86.64
BPFA 87.04 91.20 94.56 92.60

APrU-DL 94.24 94.92 88.16 93.96
SBDL 99.60 99.16 98.64 99.00

2000

10

K-SVD 91.00 88.88 50.56 25.32
BPFA 91.16 92.28 86.44 90.84

APrU-DL 97.00 94.88 86.24 95.44
SBDL 98.56 95.72 80.20 93.88

20

K-SVD 95.64 96.68 95.16 94.00
BPFA 89.68 91.76 94.72 93.04

APrU-DL 95.40 96.48 95.80 96.56
SBDL 99.48 99.56 98.92 99.16

30

K-SVD 95.88 96.92 96.96 93.36
BPFA 87.24 91.08 95.92 93.94

APrU-DL 94.28 95.00 96.80 95.64
SBDL 99.40 99.16 99.52 99.32

signals {yl}Ll=1 are produced based on D, where each signal
yl is a linear combination of Kl randomly selected atoms and
the weighting coefficients are i.i.d. normal random variables.
Two different cases are considered. First, all training samples
are generated with the same number of atoms, i.e. Kl = K, ∀l,
and K is assumed exactly known to the K-SVD method.
The other case is that Kl varies from 3 to 6 for different l
according to a uniform distribution. In this case, the K-SVD
assumes that the sparsity level equals to 6 during the sparse
coding stage. The observation noise is assumed multivariate
Gaussian with zero mean and covariance matrix σ2I . The
recovery success rate is used to evaluate the dictionary learning
performance. Table I shows the average recovery success rates
of respective algorithms, where we set L = 1000 and L =
2000, respectively, and the signal-to-noise ratio (SNR) varies
from 10 to 30dB. Results are averaged over 50 independent
trials. From Table I, we can see that the proposed method
achieves the highest recovery success rates in most cases.

We now demonstrate the results by applying the above
methods to image denoising. Suppose images are corrupted
by white Gaussian noise with zero mean and variance σ2. We
partition a noise-corrupted image into a number of overlapping
patches (of size 8×8 pixels) obtained with one pixel shifting.
Half patches are selected for taring. The selected patches are
then vectorized to generate the training signal {yl}. Also,
in our experiments, we assume that the noise variance is
perfectly known a priori by the K-SVD method. After the
training by respective algorithms, the trained dictionary is then
used for denoising. Table II shows the peak signal to noise
ratio (PSNR) results obtained for different nature images by
respective algorithms, where the noise standard deviation is
set to σ = {15, 25, 50}, respectively, and the dictionary to be

TABLE II
PSNR RESULTS

σ Algorithm boat cameraman couple

15

K-SVD 29.2802 31.4638 31.4068
BPFA 29.5446 31.1759 31.2875

APrU-DL 29.5718 31.7662 31.5304
SBDL 29.5881 31.6978 31.4473

25

K-SVD 26.9308 28.6211 28.6949
BPFA 27.0726 28.4483 28.5825

APrU-DL 26.8998 28.7069 28.5378
SBDL 27.1570 28.8380 28.8431

50

K-SVD 22.9499 23.9898 24.3532
BPFA 23.4165 23.7873 24.5719

APrU-DL 22.7274 23.5888 24.1901
SBDL 23.4651 24.1899 24.7870

inferred is assumed of size 64 × 256. From Table II, we see
that the results of all methods are very close to each other
in general. The proposed SBDL achieves a slightly higher
PSNR than other methods in most cases, This result again
demonstrates the superiority of the proposed method. In Fig.
1, we present the noise-corrupted images “cameraman” and
“couple”, and the denoised images using dictionaries trained
by SBDL. The trained dictionaries are also shown on the right
sides of Fig. 1.

Fig. 1. Example of the denoising results for the image “Cameraman” (σ =
25. From left to right: the corrupted image, the denoised image by SBDL
(28.8380dB), the dictionary trained by SBDL.

V. CONCLUSIONS

We developed a new Bayesian hierarchical model for learn-
ing overcomplete dictionaries based on a set of training data.
This new framework extends the conventional sparse Bayesian
learning framework to deal with the dictionary learning prob-
lem. Unlike some of previous methods, the proposed methods
do not need to assume knowledge of the noise variance a
priori, and can infer the noise variance automatically from
the data. Numerical results show that the proposed methods
are able to learn the dictionary with an accuracy notably better
than existing methods.
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