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ABSTRACT

Latent Dirichlet allocation (LDA) is a widely-used topic model
where a set of hidden topics is learned to model a collection of
data in the form of bag-of-words. Correlated topic model (CTM)
extends LDA, modelling topic correlation by using logistic nor-
mal prior for topic proportion vectors, instead of Dirichlet prior.
However, in the case of bag-of-words from multiple data sources
(for instance, streams of time-stamped measurements in sensor
networks), where each word in a document is labeled with one of
data sources from which the data comes, it is desirable to consider
correlations across topics as well as across data sources. In this pa-
per we present two-dimensional correlated topic model (2D-CTM)
where we use a matrix-variate logistic normal distribution for a
topic proportion matrix, in which correlations across topics as well
as across data sources are captured by two covariance matrices of
the matrix-variate normal distribution. We develop a mean-field
variational inference algorithm for approximate posterior inference
in our model 2D-CTM. We apply 2D-CTM to the problem of human
activity recognition and sport tactic analysis, using data collected on
multiple on-body sensors, with comparison to existing topic models.

Index Terms— Latent Dirichlet allocation, sports tactic analy-
sis, topic models.

1. INTRODUCTION

Latent Dirichlet allocation (LDA) is a widely-used topic model,
which was originally developed to model text corpora [3]. LDA is a
hierarchical Bayesian model in which each observed token is mod-
elled as a finite mixture over an underlying set of topics and each
topic is characterized by a distribution over words. Correlated topic
model (CTM) extends LDA to overcome the inability of LDA to
model topic correlations, replacing Dirichlet distribution by logistic
normal distribution for the topic proportions [2].

Various extensions of LDA or CTM have been developed to
handle more complex data or to incorporate meta data. Pachinko
allocation uses a directed acyclic graph to capture arbitrary corre-
lations between topics [10]. The Dirichlet-multinomial regression
topic model [11] is an exemplary model where meta data is incor-
porated into topic models. One interesting model, which is closely
related to our work, is multi-field CTM (mf-CTM) [15] which allows
multiple sets of topics to be used for different fields or for different
data sources. Topic proportion vectors are drawn from logistic nor-
mal distributions, as in CTM, however, they are partitioned into sev-
eral vectors, each of which is associated with corresponding field.
The size of covariance matrix in mf-CTM is increasing in accor-
dance with the number of fields as well as with the number of topics,
requiring a large number of parameters, compared to CTM.

In this paper we consider a case where bag-of-words data come
from multiple data sources (for instance, streams of time-stamped

measurements in sensor networks), where each word in a document
is labeled with one of data sources from which the data comes. In
such a case, it is desirable to consider both correlations across topics
and across data sources. To this end, we present two-dimensional
correlated topic model (2D-CTM) where we use a matrix-variate
logistic normal distribution for a topic proportion matrix, in which
both correlations across topics and across data sources are captured
by two covariance matrices of the matrix-variate normal distribu-
tion. This provides a more compact parameterization, in compari-
son to mf-CTM. We develop a mean-field variational inference al-
gorithm for approximate posterior inference in our model 2D-CTM.
We validate the performance of 2D-CTM, applying it to the on-body
sensor-based activity recognition, where data collected from multi-
ple on-body sensors is classified into one of predefined activity cat-
egories.

A two-dimensional topic-aspect model [14] or factorial LDA
[13] is also an extension of CTM using a multi-dimensional tech-
nique. However, these models focus on multi-faceted data, which is
different from our goal. In fact, our model 2D-CTM shares a similar
underlying spirit to 2D-LDA [17] or 2D-CCA [9] where subspace
methods are extended to handle matrix data directly rather than mul-
tivariate data.

2. RELATED WORK: CORRELATED TOPIC MODEL

We briefly give an overview of correlated topic model (CTM) [2].
Each document, denoted by wd,1:N , is a sequence of N words, for
d = 1, . . . , D (D is the size of a corpus) and each wordwd,n ∈ RV
(V is the size of vocabulary) is a unit vector that has a single entry
equal to one and all other entries equal zeros. For instance, if wd,n

is the vth word in the vocabulary, then wd,n,v = 1 and wd,n,j = 0
for j 6= v. The graphical model for LDA is shown in Fig. 1a, where
each word wd,n for n = 1, . . . , N in document d is assumed to be
generated as follows:

• Draw a vector θd ∈ RK , θd | {µ,Σ} ∼ N (µ,Σ), where
N (µ,Σ) denotes multivariate normal distribution with mean
vector µ and covariance matrix Σ.

• Compute a vector of topic proportions, θ̃d ∈ RK , whose en-
try θ̃d,k is the soft-max transform of θd,k, a mapping of real
values drawn from the Gaussian to the probability simplex,
θ̃d,k = exp(θd,k)/

∑K
j=1 exp(θd,j).

• For each word n,
1) Draw a topic assignment zd,n ∈ RK from multinomial

distribution: zd,n |θd ∼ Mult
(
θ̃d
)

=
∏K
k=1

(
θ̃d,k

)zd,n,k

.

2) Draw a wordwd,n ∈ RV :
wd,n|zd,n,φ1:K ∼ p(wd,n|zd,n,φ1:K),

where φ1:K is a shorthand notation for {φ1, . . . ,φK}.
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Variational inference was applied in [2] to calculate approximate
posterior distributions over hidden variables, {θd,zd,n}, by maxi-
mizing the variational lower-bound on the log marginal likelihood
p(w1:D,1:N |α,φ1:K).

3. TWO-DIMENSIONAL CORRELATED TOPIC MODEL

In this section, we present our main contribution, 2D-CTM, whose
graphical representation is shown in Fig. 1b. In contrast to CTM
or LDA, we consider the case where data come from multiple data
sources. Each word wd,n is given with label variable ld,n, for data
source, which is a I-dimensional unit vector (I is the number of data
sources) used to represent which data source yields the word wd,n.
For instance, if word j in document d corresponds to the data sam-
ple n measured at sensor i, then wd,n,j = 1 and ld,n,i = 1. A
distinct property of 2D-CTM is to use a matrix of topic proportions,
Θ̃d ∈ RI×K , whose entries Θ̃d,i,k are soft-max transform of Θd,i,k

which are elements of a random matrix drawn from matrix-variate
normal distribution, in order to capture correlations both across top-
ics and across data sources. A brief review of matrix-variate nor-
mal distribution is provided below, followed by describing 2D-CTM
model and presenting corresponding mean-field variational infer-
ence and parameter estimation.

3.1. Matrix-Variate Normal Distribution

The random matrixX ∈ RR×C is said to have a matrix-variate nor-
mal distribution [6] with mean matrix M ∈ RR×C and covariance
matrices Σ ∈ RR×R and Ψ ∈ RC×C ,

X ∼MNR×C(M ,Σ,Ψ),

if vec(X) obeys RC-dimensional multivariate normal distribution,
i.e., vec(X) ∼ N

(
vec(M),Ψ ⊗ Σ

)
, where vec(·) is the vector-

ization of a matrix which converts a matrix into a column vector
obtained by stacking the columns of a matrix on top of another, and
⊗ represents Kronecker product. The probability density function of
X is given by

p(X) =
exp

{
− 1

2
tr
(
Σ−1

(X−M )Ψ−1
(X−M )>

)}
(2π)

RC
2 |Σ|

C
2 |Ψ|

R
2

,

where tr(·) denotes the trace operator which computes the sum
of all diagonal entries of a matrix.

3.2. Model

The generation process for each trajectory word {wd,n} for n =
1, . . . , N in data d is as follows.

• Draw a matrix Θd ∈ RI×K , from matrix-variate normal dis-
tribution: Θd ∼MN I×K(M ,Σ,Ψ).

• Compute a matrix of topic proportions, Θ̃d ∈ RI×K , whose
entry Θ̃d,i,k is the soft-max transform of Θd,i,k,
Θ̃d,i,k = exp(Θd,i,k)/

∑K
k′=1 exp(Θd,i,k′).

• For each word n,
1) Draw a topic assignment zd,n ∈ RK from multinomial
distribution: zd,n |Θd, ld,n ∼ p(zd,n|Θ̃d, ld,n).
2)Draw a wordwd,n ∈ RV :
wd,n |zd,n,φ1:K ∼ p(wd,n|zd,n,φ1:K).

3.3. Variational Inference

We present variational inference [8] for 2D-CTM, where a varia-
tional lower-bound on marginal likelihood is maximized to approxi-
mately compute posterior distributions over hidden variables and to
determine the most probable values of parameters. We define sets of
variablesW =

{
wd,n

}
, Z =

{
zd,n

}
, L =

{
ld,n
}
,Θ =

{
Θd

}
and a set of parameters {M ,Σ,Ψ,φ1:K}. Then the joint distribu-
tion over these variables obeys the following factorization:

p(Θ,Z,W,L|M ,Σ,Ψ,φ1:K)

= p(Θ|M ,Σ,Ψ)p(Z|Θ,L)p(W|Z,L,φ1:K)p(L),

where the first distribution is parameterized by a product of matrix-
variate normal distributions p(Θ|M ,Σ,Ψ) =

∏D
d=1 p(Θd|M ,Σ,Ψ),

where
p(Θd|M ,Σ,Ψ)

=
exp
{
− 1

2
tr
(
Σ−1(Θd −M)Ψ−1(Θd −M)>

)}
(2π)

IK
2 |Σ|K2 |Ψ| I2

,

and the second and third distributions are parameterized by products
of multinomial distributions

p(Z|Θ,L) =
∏D
d=1

∏N
n=1

∏I
i=1

∏K
k=1

(
Θ̃d,i,k

)ld,n,i zd,n,k ,
p(W|Z,L,φ1:K) =

∏D
d=1

∏N
n=1

∏K
k=1

∏V
j=1

(
φk,j

)zd,n,k wd,n,j ,
and p(L) is a constant, which will be left out in subsequent calcula-
tions, since L is a set of observed variables.

Define a set of parameters as M = {M ,Σ,Ψ,φ1:K}.
Marginalizing hidden variables out yields the log marginal like-
lihood that is of the form

log p(W,L|M)

≥
∫
Θ

∑
Z

q(Θ,Z) log

(
p(Θ,Z,W,L|M)

q(Θ,Z)

)
dΘ = F(q),

where q(Θ,Z) denotes the variational distribution and Jensen’s in-
equality is to used to reach the variational lower-bound F(q). We
assume that the variational distribution factorizes as q(Θ,Z) =
q(Θ)q(Z), where each distribution is assumed to be of the form of

Table .1. Variational parameters,
{
{Md,i,k}, {Γd,i,k}, {ρd,n,k}

}
,

are determined by maximizing the variational lower-bound

F(q) = Eq
[
log p(Θ|M ,Σ,Ψ) + log p(Z|Θ,L)

+ log p(W|Z,L,φ1:K)
]
− Eq

[
log q(Θ) + log q(Z)

]
,

where Eq[·] denotes the statistical expectation with respect to the
variational distribution q(·).

One thing must be noted in this calculation is that unlike CTM,
we consider a local quadratic bound for the log-sum of exponentials
[4] where the standard quadratic bound [7] for log(1 + ex),

log(1 + ex) ≤ λ(ξ)(x2 − ξ2) + x−ξ
2

+ log(1 + eξ),
follows the fact that the sum of exponentials is upper-bounded

by a product of sigmoids,
∑
i e
xi ≤

∏
i(1 + exi), where λ(ξ) =

1
4ξ

tanh( ξ
2
). As a result, this local quadratic bound enable us to have

closed form solutions for all the parameter updates unlike CTM.
Closed-form updates for variational parameters are obtained by solv-
ing a corresponding stationary point equation of Fq for a parameter
of interest, which is summarized in Table. 1. Variational parameters
ξd,i,j for document d, which appear in the local quadratic approxi-
mation for log-sum of exponentials, are updated by

ξd,i,j =
(

Γd,i,j +M
2
d,i,j

) 1
2
,

for i = 1, . . . , I and j = 1, . . . ,K.
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Table 1. Updating equations for variational parameters of 2D-CTM.

Variational posterior distributions Updating equations for variational parameters

q(Θ) =
D∏

d=1

I∏
i=1

K∏
k=1

N (Θd,i,k|Md,i,k,Γd,i,k)

Md,i,k = Bd,i,k/(Σ
−1
i,i Ψ−1

k,k + 2
∑N
n=1 ld,n,iλ(ξd,i,k)) ,

Γd,i,k = (Σ−1
i,i Ψ−1

k,k + 2
∑N
n=1 ld,n,iλ(ξd,i,k))−1 , where

Bd,i,k = −
∑
j 6=i
∑
l6=k Σ−1

i,j (Md,j,l −Mj,l)Ψ
−1
l,k −

∑
j 6=i Σ−1

i,j (Md,j,k −Mj,k)Ψ−1
k,k

−
∑
l 6=k Σ−1

i,i (Md,i,l −Mi,l)Ψ
−1
l,k + Σ−1

i,iMi,kΨ−1
k,k +

∑N
n=1 ld,n,iρd,n,k −

1
2

∑N
n=1 ld,n,i

q(Z) =
D∏

d=1

N∏
n=1

K∏
k=1

(
ρd,n,k

)zd,n,k
log ρd,n,k ∝

∑V
j=1 wd,n,j log φk,j +

∑I
i=1 ld,n,i

[
Md,i,k

−
∑K
j=1

{
λ(ξd,i,j)(Γd,i,j +M

2
d,i,j − ξ2d,i,j) +

(Md,i,j−ξd,i,j)
2

+ log(1 + eξd,i,j )
}]

D

N K

µ Σ

φk
Wd,n

Zd,n

θd

(a) CTM.

D

N K

φk
Wd,n

Zd,n

Θd

ld,n

M Σ Ψ

(b) 2D-CTM.
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Fig. 1. Graphical representation of (a)CTM and (b)2D-CTM with performance comparison in terms of log-likelihood and perplexity: (c)
log-likelihood of training data in ’walk’ class; (d) log-likelihood of held-out data in ’walk’ class using 10-fold cross validation; (e) perplexity
when half of words in each document are observed;

Table 2. Performance comparison in terms of F -measure.

CTM mf-CTM.dt 2D-CTM NN 3-NN PCA-NN

0.8885 0.7450 0.7700 0.4701 0.4250 0.3568

3.4. Parameter Estimation

Maximizing the variational lower-bound Fq also yields updates for
parameters. Multinomial parameters {φk,j} are updated by

φk,j =

∑D
d=1

∑N
n=1 ρd,n,kwd,n,j∑V

j=1

∑D
d=1

∑N
n=1 ρd,n,kwd,n,j

.

Parameters {M ,Σ,Ψ} involving matrix-variate normal distribu-
tion are also updated by

M =
1

D

D∑
d=1

Md,

Σi,j =
1

KD

D∑
d=1

[
(M̃d)Ψ

−1(M̃d)
>
]
i,j

+
δi,j
KD

D∑
d=1

K∑
k=1

Γd,i,kΨ−1
k,k,

Ψi,j =
1

ID

D∑
d=1

[
(M̃d)

>Σ−1(M̃d)
]
i,j

+
δi,j
ID

D∑
d=1

I∑
i=1

Γd,i,kΣ−1
i,i ,

where M̃d = (Md −M), δi,j denotes Kronecker delta which
equals one for i = j and zero otherwise. We further regularize two
covariance submatrices Σ,Φ with sparse covariance estimation as

follows [1]:

Σ← S(Σ, ηPK),Ψ← S(Ψ, ηP I),

where S(C,P ) is the elementwise soft-thresholding operator
S(C,P )i,j = sgn(Ci,j) max(Ci,j − Pi,j , 0), PK ∈ RK×K
is a matrix filled with ones but zeros on diagonal entries, and η is
a sparsity parameter. If η has a larger value, the covariance matrix
will be more sparse.

4. EXPERIMENTS

We evaluate the performance of our 2D-CTM, applying it to the
problem of human activity recognition (HAR), where CTM was suc-
cessfully used [16]. We compare 2D-CTM with CTM [2] and mf-
CTM [15], carrying out experiments on the on-body multiple sensor-
based HAR dataset [5]. We evaluate our model in unsupervised task
as well as supervised task.

In an unsupervised task, we evaluate the log-likelihood of train-
ing set for each of 5 classes, but here we report the results for class
’walk’ only. The log-likelihood of training set for each model (2D-
CTM, CTM, and mf-CTM) is shown in Fig. 1c, where 2D-CTM
and mf-CTM.dt outperforms CTM. The difference of 2D-CTM and
mf-CTM.dt is almost negligible. The average log-likelihood of held-
out data using 10-fold cross-validation for each model is shown in
Fig. 1d, where 2D-CTM and mf-CTM provide a better fit than CTM
and the difference of 2D-CTM and mf-CTM.dt is almost negligible
as before. We evaluate the perplexity of each model which mea-
sures how well the model predicts the rest of words when a fraction
of words in a document is observed. The perplexity of unobserved
words in held-out documents is defined as the reciprocal geometric
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mean of the likelihood of unobserved words wd,n in document d
given observed wordswd,1:Bd and trained parametersM:

Perp =

 D∏
d=1

Nd∏
n=Bd+1

p(wd,n|wd,1:Bd ;M)


−1∑D

d=1
Nd−Bd

,

where Bd is the number of observed words in held-out document d.
We consider the first half of words along time stamp in each held-out
document is observed and the rest is to be predicted (see Fig. 1e). In
this cases, both 2D-CTM and mf-CTM outperform CTM, while K
varies from 2 to 6. And 2D-CTM and mf-CTM shows similar result
as before.

Both models considering correlation over sources and topics
beat the model only considering correlation over topics, which justi-
fies why we consider correlation over sources in addition. Moreover,
2D-CTM requires only I(I + 1)/2 + K(K + 1)/2 parameters for
covariance matrices, while mf-CTM.dt needs (IK)(IK + 1)/2
parameters for the big covariance matrix. Even tough the compact
parameterization of 2D-CTM compared to mf-CTM.dt, the perfor-
mance in unsupervised task do not degrade, which implies 2D-CTM
may scale better than mf-CTM.dt without degrading performance.

In a supervised task, we compare topic models with base-
line methods in [5], t o evaluate how well a locomotion mode
is predicted given an unseen document. In Opportunity chal-
lenge [5], nearest neighbor (NN) methods were successfully used,
including NN, 3-NN, PCA-NN (PCA is followed by NN). In
our experiments, we first learn parameters of 5 topic models
Mstand,Mwalk,Mnone,Msit,Mlie, each of which corresponds
to Stand, Walk, None, Sit and Lie documents. Then, given an
unseen document d, we choose a model that maximizes posterior
probability p(Mclass|d) ∝ p(d|Mclass)p(Mclass) with uniform
distribution over the model parameters. In this way, we can fully
exploit the influence of the covariance matrix of topic models. Re-
sults are summarized in Table 21 where events with missing values
are discarded. 2D-CTM outperforms NN methods in terms of F -
measure as well as mf-CTM. This result shows the robustness of
2D-CTM in the presence of missing values, which frequently occur
in sensor networks. However, CTM shows better performance than
2D-CTM and mf-CTM.dt, implying that the supervised task favors
a model that considers correlations over topics only.

In addition, we apply 2D-CTM to DEBS 2013 dataset [12]
for sport tactic analysis and define tactic as two correlated move-
ments(topics) are carried out by two correlated players(sources).
DEBS 2013 consist of real time trajectories of 8 vs 8 soccer game.
We first make input stream data quantization with location, acceler-
ation and direction with sliding time window and take it as a word
with player identity as label only if its acceleration exceeds certain
threshold. Then, we label 29 attacking scenes in the first half as
documents. We apply two types of 2D-CTM (fixed means Σ is
fixed as empirical covariance across sources; init means Σ is just
initialized with it) and mf-CTM.dt to this dataset. As shown in Fig.
3, 2D-CTM has the highest average held-out log-likelihood when
K=4 and both 2D-CTM variants works robustly as the number of
topic increase due to the compact parameterization than mf-CTM.dt,
which is prone to over-fitting. The result of sports tactics analysis is
demonstrated in Fig. 2 2, where two orthogonal tactics are mined;

1We select the model with highest F-measure: CTM(K=3), mf-
CTM.dt(K=5), 2D-CTM(K=5).

2Even though it is less predictive than K=4, we use 15 topics (K=15)
because the mined tactics are more recognizable by human.
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Fig. 2. Mined football tactics with DEBS2013 dataset; two left pan-
els side show correlations between two players(source), while two
right panels show correlation across movements(topics). Each row
stands for the such tactics, which is orthogonal to each other.
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5. CONCLUSIONS

In this paper, we have presented 2D-CTM in order to model discrete
data measured from multiple data sources, incorporating correlations
between data sources into the mode. Matrix-variate logistic normal
distribution was introduced as an prior for the topic proportion ma-
trix. In contrast to the CTM, 2D-CTM captured correlations across
topics as well as correlations across data sources, which allowed
us to find topics shared over all the data sources. We have evalu-
ated the performance of 2D-CTM, applying it the on-body sensor-
based human activity recognition task dataset as well as DEBS2013
dataset for sport tactic analysis. Our model 2D-CTM yielded more
compact parameterization, compared to mf-CTM.dt, while achiev-
ing the compatible (or slightly better) performance and resistant to
over-fitting.
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