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ABSTRACT

Principal Component Analysis (PCA) is adopted in diverse
areas including signal processing and machine leaning. How-
ever, the derived principal components, the linear combi-
nations of the original variables, are hard to be interpreted
in many applications especially the blind source separation.
Therefore, we propose regularized PCA via hard threshold-
ing such that the derived loadings are sparse and easier to be
interpreted. The proposed method has advantages due to the
adoption of hard thresholding. First, the proposed method
can be implemented by linear operators and thus computa-
tional efficient even in p � n or large p scenarios. Second,
the threshold can be objectively selected based on statisti-
cal decision theory without domain knowledge. Moreover,
simulations show the superiority of our method compared to
the L1-penalized method. Therefore, our approach can be a
strong competitor of the existing sparse PCA.

Index Terms— Principal component analysis (PCA),
sparse PCA, regularization, hard thresholding, blind source
separation.

1. INTRODUCTION

Principal Component Analysis (PCA) is adopted for diverse
applications in many areas like signal processing and machine
learning due to its computational efficiency and theoretic in-
sights. PCA can be considered as a fundamental method of
matrix decomposition and is briefly described below. With-
out loss of generality, assume that we have a n × p data ma-
trix X such that all columns of X have zero mean. Apply the
eigenvalue decomposition, then

X = UΛVT . (1)

Each column of V is a loading and each row of UΛ repre-
sents a Principal Component (PC).

For dimension reduction, the first k < min(n, p) PCs are
selected to represent the original data X. However, the de-
rived PCs, the linear combinations of the original p variables,
are hard to be interpreted [1, 2]. One of the reasons is that
PCs over-fit to noise and thus almost all the elements of V
are nonzero. The other is that the loadings are orthogonal.

The undesired properties of PCA degrade its performance in
applications like the blind source separation.

Some works modify PCA by introducing regularizations
such that the derived loading are sparse [3]. Hence, each re-
sulting PC consists of a small subset of variables and thus are
easier to be interpreted. An pioneer approach directly applies
the L1-penalty on the loadings [1]. The L1-penalty shrinks
the entries of loadings to zero until a sparse solution is de-
rived as in the LASSO regression [4]. A more sophisticated
work proved that PCA can be formulated as a regression type
optimization, then we can obtain sparse loadings by solving
a L1 and L2-penalized regression [2]. The resulting Sparse
PCA (SPCA) is a promising method and is considered as the
benchmark.

The SPCA requires additional algorithm to handle the
elastic net optimization, L1 and L2-penalized regression, in
each iteration [5]. Moreover, there are k tuning parameters,
each one controls the sparsity of a single PC. The choice
of the tuning parameters usually requires subjective domain
knowledge of users or further searching steps. Another draw-
back of the SPCA is that the L1-penalty introduces distortions
by shrinking the entries of loading matrix to zero. Therefore,
we propose a novel method, Sparse PCA via Hard Thresh-
olding (SPCA-HT), in this paper.

Although the L1-penalty has attractive ability of de-
noising [6], it introduces additional distortions by shrinking
the elements of V to zero. Therefore, the proposed SPCA-HT
uses hard thresholding to regularize PCA. Our approach only
requires one tuning parameter, which is the hard threshold,
and can be objectively determined by following statistical de-
cision theory. Moreover, there are two benefits arising from
the relief of L1-penalty. 1) The SPCA-HT algorithm only
requires linear operations and thus is computational efficient
even in p� n or large p scenarios. 2) Simulations show that
the SPCA-HT better estimates principal directions and thus
explains more variance of the data, since it does not shrink
the coefficient of V to zero as the LASSO based methods do.

This paper considers blind source separation, which is fre-
quently encountered in signal processing [7], as an example
to illustrated the superiority of the proposed SPCA-HT com-
pared with the SPCA. The simulations show that the SPCA-
HT better estimates the principal directions and has higher
explained variance than the LASSO based SPCA under the
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same sparsity of V. Therefore, the SPCA-HT can be a poten-
tial solution of blind source separation.

2. PRELIMERARIES

The first k columns of V in (1) can be obtained by solving the
L2-penalized optimization as described below.

Theorem 1 (PCA and Regularized Optimization [2]).
Let A and B both be p×k matrix such that A = [a1 · · · ak]
and B = [b1 · · · bk]. For any λ > 0, let (A∗,B∗) be the
solution of the optimization

minimize
A,B

∑k
j=1

{
‖Xaj −Xbj‖2 + λ‖bj‖2

}
subject to ATA = I.

(2)

Then, b∗j/‖b
∗
j‖ = vj ,∀j = 1, 2, . . . , k.

The SPCA introduces the L1-penalty into (2).

Definition 1 (Sparse PCA).
Let A and B both be p×k matrix such that A = [a1 · · · ak]
and B = [b1 · · · bk]. Given λ > 0, nonnegative constants
λj , j = 1, 2, . . . k, and let (Â, B̂) be the solution of the opti-
mization

minimize
A,B

∑k
j=1

{
‖Xaj −Xbj‖2 + λ‖bj‖2 + λj‖bj‖1

}
subject to ATA = I.

(3)

Then, the sparse loadings are v̂j = b̂j/‖b̂j‖,∀j.

An iterative algorithm of SPCA is shown in Algorithm 1.

Algorithm 1 SPCA [2]
1: Initialize with A = [v1 v2 · · ·vk] where X = UΛVT .
2: Update B given A: For j = 1, 2, . . . , k, update bj by

solving the elastic net optimization

minimize
b

‖Xaj −Xb‖2 + λ2‖b‖2 + λ1,j‖b‖1. (4)

3: Update A given B: Derive the SVD, XTXB =
ŨΛ̃ṼT , then A← ŨṼT .

4: Repeat step 2 and 3 until convergence.
5: vj ← bj/‖bj‖,∀j = 1, 2, . . . , k.

3. MAIN RESULTS

The L1-penalty plays an important role in the SPCA. In the
Lq, q ∈ N penalty family, [8] proves that only the LASSO
(L1-penalty) can produce a sparse solution and thus is ca-
pable of de-noising. That is the L1-penalty prevents PCA
from over-explaining the variance of noise. However, there

are benefits after substituting hard thresholding for the L1-
penalty. 1) The elastic net (4) is reduced to a ridge regres-
sion [9] and can be solved by linear operations. 2) Hard
thresholding does not introduce additional distortions of V
by shrinking the elements to zero as the LASSO does. There-
fore, we adopt hard-thresholding for the proposed method.

3.1. Sparse PCA via Hard-Thresholding

We use a regularization matrix to control the sparsity of V.

Definition 2 (Regularization Matrix G).
Any matrix G ∈ {0, 1}p×k can be a valid regularization ma-
trix and [V]ij = 0 if [G]ij = 0.

With a well-designed regularization matrix G, we can re-
place the L1-penalty in (3) by the zero constraints introduced
by G and still be able to derive sparse loadings.

Definition 3 (Spare PCA via Hard Thresholding).
Given a sparse regularization matrix G. For any λ > 0, let
(Ã, B̃) be the solution of the optimization

minimize
A,B

∑k
j=1

{
‖Xaj −Xbj‖2 + λ‖bj‖2

}
subject to ATA = I, [B]ij = 0 if [G]ij = 0.

(5)

Then, the sparse loadings are ṽj = b̃j/‖b̃j‖,∀j.

Moreover, we show that the SPCA-HT can be obtained
by an algorithm using linear operations, which is critical for
computational efficiency.

Theorem 2 (Equivalent Form of the SPCA-HT).
Let Dj be the diagonal matrix with [Dj ]ii = [G]ij , that is
Dj = diag(gj). Then (Ã, B̃) in Definition 3 can be obtained
by solving

minimize
A,B

∑k
j=1

{
‖Xaj −XDjbj‖2 + λ‖bj‖2

}
subject to ATA = I.

(6)

Therefore, the elastic net (4) of Algorithm 1 is reduced to a
ridge regression with solution

bj = (DjX
TXDj + λI)−1DjX

TXaj . (7)

Moreover, when p� n, (7) is further simplified to

bj = DjX
TXaj . (8)

Proof of Theorem 2 . Let bj = [b1j b2j · · · bpj ]T and Djbj =

[b̃1j b̃2j · · · b̃pj ]T , then

b̃ij =

{
bij , if [Dj ]ii = 1.
0 , otherwise. (9)

=

{
bij , if [G]ij = 1.
0 , otherwise. (10)
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Now consider the optimization, for any λ > 0

minimize
aj ,bj

‖Xaj −XDjbj‖2︸ ︷︷ ︸
(a)

+λ‖bj‖2︸ ︷︷ ︸
(b)

. (11)

From (10) we know that bij has no influence on term (a) of
(11). Hence, bij should be zero if [G]ij = 0 due to the penalty
term (b). Note that bij = [B]ij , then (11) is equivalent to

minimize
aj ,bj

‖Xaj −Xbj‖2 + λ‖bj‖2

subject to [B]ij = 0 if [G]ij = 0.
(12)

Combine all j and add the orthonormal constraint ATA =
I, then we show that (5) is equivalent to (6). Therefore, the
elastic net (4) is reduced to the ridge regression

bj = arg min
b
‖Xaj −XDjb‖2 + λ‖b‖2. (13)

After doing some linear algebra, one can obtain

bj = (DjX
TXDj + λI)−1DjX

TXaj . (14)

For p � n, note that λ is arbitrary nonnegative constant. Let
λ→∞, we have bj ∝ DjX

TXaj . Since ṽj = b̃j/‖b̃j‖, we
can let bj = DjX

TXaj .

Hence, the SPCA-HT can be obtained by Algorithm 2.

Algorithm 2 Proposed SPCA-HT
1: Given G = [g1 g2 · · · gk] and initialize with A =

[v1 v2 · · ·vk] where X = UΛVT .
2: Update B given A: ∀j = 1, 2, . . . , k, Dj ← diag(gj).

bj ←
{

DjX
TXaj , if p� n.

(DjX
TXDj + λI)−1DjX

TXaj , otherwise.

3: Update A given B: Derive the SVD, XTXB =
ŨΛ̃ṼT , then A← ŨṼT .

4: Repeat step 2 and 3 until convergence.
5: vj ← bj/‖bj‖,∀j = 1, 2, . . . , k.

3.2. The Regularization Matrix G

For data reduction, we want to choose a small number of PCs
that explain most of the variance of the data. On the other
hand, for sparse PCA, each PC should only consist of a small
number of highly related variables. Therefore, we summa-
rize: 1) Suppose variable i has large variance and thus signif-
icant. There should be at least one principal component (PC)
consist of variable i. 2) Highly correlated variables should be
explained by the same PC.

To identify highly correlated variables, we have the hy-
potheses, for all i, j

H0,ij : variable i and j are not correalted.
H1,ij : not H0,ij .

(15)

Without loss of generality, we consider two-tailed tests in
this paper, H0,ij : ρij = 0 and H1,ij : ρij 6= 0, where
ρij is the correlation coefficient of xi and xj . The standard
testing statistic is the sample correlation coefficient of vari-
able i and j defined as ρ̂ij =

∑n
l=1(xli−x̄i)(xlj−x̄j)

‖xi−x̄i1‖‖xj−x̄j1‖ where
x̄i = 1

n

∑n
l=1 xli. The resulting decision rule is rejecting

H0,ij if and only if |ρ̂ij | ≥ ρ where ρ is the decision thresh-
old. The proposed method uses ρ to perform hard threshold-
ing and the choice of ρ can be objectively judged by statistical
decision theories [10, 11]. With appropriate choice of ρ, we
have the decision matrix H.

Definition 4 (Decision Matrix H).
The matrix H ∈ {0, 1}p×p is a decision matrix when [H]ij =
1 if and only if H0,ij is rejected.

Suppose variable j has large variance, at least one PC
should consist of variable j along with its highly correlated
variables which are indicated by the j-th column of H, hj .
Therefore, hj indicates the nonzero elements of the corre-
sponding loadings and hj should be a column of G. With the
same argument, we can find another significant variable with-
out being selected, then forms a new column of G. Repeat the
procedures until k columns of H are chosen, we then have the
regularization matrix G. Hence, we propose Algorithm 3 to
implement the rational above.

Algorithm 3 Regularization Matrix G

1: Let α be a permutation of {1, 2, . . . , p} such that
var(xα1

) ≥ var(xα2
) ≥ . . . var(xαp

) and G is empty.
2: while number of columns of G < k do
3: if j = 1, 2, . . . p and hαj

has not been chosen then
4: G has new column hαj .
5: end if
6: end while

4. SIMULATION STUDY

The general model of blind source separation in signal pro-
cessing is XT = FS+W [12]. Suppose there are k sources,
then the k × n matrix S is the signal matrix with i-th row be-
ing the time series of signals of i-th source. The p× k matrix
F is the signature/mixing matrix with j-th column being the
signature vector of j-th source. The p × n noise matrix W
is uncorrelated to S. The challenge is to estimate F and S si-
multaneously. Suppose F is normalized such that all columns
have unit Euclidean norm, then we can use sparse loadings to
estimate F.

To compare the SPCA and the SPCA-HT, one important
performance measure is the explained variance of the derived
PCs. Since both methods may produce linear correlated PCs,
we use Adjusted Explain Variance (AEV) instead of explained
variance. AEV adjusts the overrated explained variance by
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Fig. 1. Box plot of estimation accuracy of sparse principal di-
rections. Note that θ is the angle between the true signature f
and the estimated one v. The LASSO based SPCA introduces
distortions of the coefficients of principal directions due to its
shrink-to-zero property. In contrast, the SPCA-HT does not
have such drawbacks and thus has superior performance.

considering the linear dependency between PCs. Apply the
QR decomposition to the estimated PC, XT V̂ = QR where
R is the triangular matrix. The i-th PC has AEVi = [R]2ii.
The other performance measure is the estimation accuracy.
Suppose we use vj to estimate f j , the j-th column of F, we
use the angle between vj and f j , θj = arccos(vTj f j) , to
evaluate the estimation performance. Since both vj and f j
are normalized to have unit L2 norm, using θj is equivalent to
using the mean squared error.

In simulations, we use sinusoidal signals such that [S]ij =
a sin(2π i

nj), randomly generated F with normalized columns

and AWGN, [W]ij
i.i.d.∼ N(0, σ2). We consider the p � n

scenario to illustrate the effectiveness and efficiency of
the proposed method. With p = 300, n = 30, k = 5,
SNR = 17dB and ρ = 0.7, the comparisons are shown in
Figure 1 and 2.

In Figure 1, the SPCA-HT is a better estimator of F, that
is, has small θ. The reason is that although the LASSO well
estimates the strong coefficient of F, it introduces distortions
to the medium level coefficients due to the shrink-to-zero
property. In contrast, the SPCA-HT has no such drawbacks
and thus has superior performance of estimating F.

For both methods, Figure 2 shows that the first PC ex-
plains above 25% of the variance of the noiseless signal S in
most of the time. It seems unsatisfactory that the first PC only
explains 25% variance in PCA. However, due to the inability
of de-noising, PCA usually overfits to noise by explaining too
much variance of noise especially in large p scenarios. Hence,
a 25% AEV is indeed good for a sparse PC. Since Figure 1

Fig. 2. Box plot of percentage adjusted explained variance.
The percentage is respect to the total variance of the noiseless
signal S. Since Figure 1 has already shown the superior esti-
mation performance of the SPCA-HT, the higher AEV of the
SPCA-HT in Figure 2 is due to the better preservation of the
signal variance.

has already shown the superior estimation performance of the
SPCA-HT, the higher AEV of the SPCA-HT in Figure 2 is
due to the better preservation of the signal variance. Unfor-
tunately, due to the limitation of papers, more data examples
cloud not be presented here.

5. CONCLUSIONS AND FINAL REMARKS

We propose a regularized PCA based on hard thresholding
to produce sparse principal directions. Compared to LASSO
based methods, the proposed SPCA-HT enjoys some advan-
tages due to the relief of the L1-penalty. First, it is easy to im-
plement since only linear operations are required in the algo-
rithm. Second, the threshold ρ, the tuning parameter, can be
objectively chosen based on statistical decision theory. Third,
the hard thresholding does not introduces additional distor-
tions of the principal directions by shrinking them to zero as
the LASSO does. In application to blind source separation,
the proposed SPCA-HT outperforms the LASSO based SPCA
in simulations and thus has great potential to be a promising
approach. This work can be considered as an early develop-
ment of a general method of regularized PCA via hard thresh-
olding. However, further efforts are required to develop both
theories and algorithms to construct a compact methodology
of sparse PCA.
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