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ABSTRACT

This paper focuses on volume minimization (VolMin)-based struc-

tured matrix factorization (SMF), which factors a data matrix into a

full-column rank basis and a coefficient matrix whose columns re-

side in the unit simplex. The VolMin criterion achieves this goal via

finding a minimum-volume enclosing convex hull of the data. Re-

cent works showed that VolMin guarantees the identifiability of the

factor matrices under mild and realistic conditions, which suit many

applications in signal processing and machine learning. However,

the existing VolMin algorithms are sensitive to outliers or lack ef-

ficiency in dealing with volume-associated cost functions. In this

work, we propose a new VolMin-based matrix factorization criterion

and algorithm that take outliers into consideration. The proposed

algorithm detects outliers and suppress them automatically, and it

does so in an algorithmically very simple way. Simulations are used

to showcase the effectiveness of the proposed algorithm.

Index Terms— Volume minimization, nonnegative matrix fac-

torization, document clustering, hyperspectral unmixing

1. INTRODUCTION

Motivated by the influential paper of Lee and Seung [1], structured

matrix factorizations (SMF) such as nonnegative matrix factoriza-

tion (NMF) have drawn much attention, since they are capable of not

only reducing dimensionality of the collected data, but also retriev-

ing loading factors that have physically meaningful interpretations.

In addition to NMF, some related types of SMF have attracted con-

siderable interest in recent years. The remote sensing community has

spent much effort on a class of factorizations where the columns of

one factor matrix are constrained to lie in the unit simplex [2,3]. The

same SMF has also been utilized for document clustering [4], and,

most recently, array processing and wireless communications [5–7].

The first important question related to SMF lies in identifiabil-

ity — when does a factorization model or criterion admit unique

solution in terms of its factors? In recent years, identifiability con-

ditions have been investigated under the NMF model [8–10]. An

undesirable property of NMF highlighted in [10] is that identifiabil-

ity hinges on an assumption that both the loading factors contain a

certain number of zeros. In many applications, however, there is at

least one factor that is dense. For example, in a typical matrix factor-

ization application, namely, hyperspectral unmixing (HU), the basis

factor (i.e., the spectral signature matrix) is always a dense matrix.

On the other hand, recent works [5, 11] showed that the SMF model
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with the coefficient matrix columns lying in the unit simplex admits

much more relaxed identifiability conditions. Specifically, [5, 11]

proved that, under some realistic conditions, unique loading factors

(up to column permutations) can be obtained by finding a minimum-

volume enclosing convex hull of the data vectors. Notably, the iden-

tifiability conditions of the so-called volume minimization (VolMin)

criterion enable us to work with dense (and even complex or nega-

tive) basis matrix factors. Since the NMF model can be recast into

(viewed as a special case of) the above SMF model [12], such results

suggest that VolMin is an attractive alternative to NMF for the wide

range of applications of NMF.

To apply VolMin in practice, there are two major challenges.

First, dealing with the VolMin cost function is computationally com-

plicated. Prior work in [13] and [14] proposed (log-)determinant

minimization-based algorithms, but they work under a noiseless

setup and require dimensionality reduction (DR) pre-processing; see

also the variants in [15, 16]. Another major branch of work [17, 18]

formulated the problem as a volume minimization-regularized data

fitting problem. Such formulations are arguably more robust against

noise and do not need pre-processing, but are computationally

harder to deal with. The second major challenge of VolMin is

outlier-sensitivity: It has been noticed in the literature that even a

single outlier can make the VolMin criterion fail [3]. An outlier-

robust VolMin algorithm has been considered in [19]; it also works

in the reduced-dimension domain, and DR itself can be sensitive to

outliers.

In this work, we are interested in the volume-regularized fitting-

based formulation as in [17, 18], but we take outliers into account.

Specifically, we impose an outlier-robust loss function onto the data

fitting part, and propose a modified log-determinant loss function

as the volume regularizer. By majorizing both functions, the fitting

and the volume-regularization terms can be taken care of in a re-

freshingly easy way. Consequently, a simple three-block alternating

optimization algorithm is derived. In addition, we show that every

limit point of the solution sequence produced by the algorithm is a

stationary point. Simulations are used to showcase the efficacy of

our algorithm.

2. VOLMIN-BASED MATRIX FACTORIZATION

Consider the following signal model:

x[ℓ] = As[ℓ] + v[ℓ], ℓ = 1, . . . , L, (1)

where x[ℓ] ∈ R
M denotes the ℓth measured data vector, v[ℓ] ∈ R

M

denotes the corresponding noise vector, A ∈ R
M×N denotes an

unknown measuring matrix (or a basis), and the coefficient vector

s[ℓ] = [s1[ℓ], . . . , sN [ℓ]]T ∈ R
N satisfies

s[ℓ] ≥ 0, 1
T
s[ℓ] = 1, (2)
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where 1 denotes an all-one vector of appropriate length, and the no-

tation ‘x ≥ 0’ means that x is element-wise nonnegative. Note that

M ≥ N is assumed throughout this paper. The signal model in (1)-

(2) appears in many applications. In text mining, x[ℓ] represents a

document, an for n = 1, . . . , N (i.e., the columns of A) represent

the topics that appear in different documents, and sn[ℓ] denotes the

weight of topic n in document ℓ. In hyperspectral unmixing, x[ℓ] is

a high-dimensional pixel, the an’s are spectral signatures of the ma-

terials contained in the image, and sn[ℓ] denotes the proportion of

material n in pixel ℓ. Please see [5, 6, 20–22] for more applications.

Notice that the NMF model can also be converted into the model

in (1)-(2), with proper normalization [12]. Thus, the applications of

NMF can also be considered under the model in (1)-(2).

The task of SMF is to recover the factors A and/or S =
[s[1], . . . , s[L]] from the data matrix X = [x[1], . . ., x[L]],
under the assumption that N is known or has been previously

estimated. The VolMin criterion is motivated by the underly-

ing convex geometry of (1)-(2). Specifically, in the noiseless

case, every x[ℓ] lives in a convex hull spanned by a1, . . . ,aN ,

i.e., x[ℓ] ∈ conv{a1, . . . ,aN} [23]. If rank(A) = N , then

a1, . . . ,aN are exactly the vertices of the convex hull; see Fig. 1

(left) for an illustration. Therefore, recovering A amounts to find-

ing these vertices. VolMin is proposed to accomplish this task via

identifying a minimum-volume enclosing convex hull. The intu-

ition of VolMin is illustrated in Fig. 1 (left), where we see that if

the data points are sufficiently spread on conv{a1, . . . ,aN}, then

the minimum-volume enclosing convex hull is identical the desired

convex hull. Formally, the VolMin criterion for the noise-free case

is as follows [5]:

min
A∈R

M×N ,S∈R
N×L

det(AT
A)

s.t. x[ℓ] = As[ℓ], ∀ℓ,

s[ℓ] ≥ 0, 1
T
s[ℓ] = 1, ∀ℓ.

(3)

where det(AT
A) is a measure of vol(A), i.e., the volume of the

convex hull conv{a1, . . . ,aN} 1. Identifiability of the formulation

above is proved in [5], thus formally verifying the intuition in Fig. 1

(left). Simply speaking, if rank(A) = rank(S) = N , and if s[ℓ]’s
are sufficiently spread in the unit simplex (so that x[ℓ]’s are suffi-

ciently spread in conv{a1, . . . ,aN}), then using VolMin guaran-

tees the identifiability of A and S up to column permutation; see

also [11] for similar results. Unlike NMF, where A has to contain

some zero entries to guarantee identifiability [10], no specific restric-

tion on A is needed when using the VolMin criterion.

The VolMin criterion is challenging to solve. The works in

[13,14,19] assumed that A is square and let vol(A) = det(A). Al-

ternating optimization and successive linearization were employed,

respectively. The drawback with the aforementioned works is that

noise is not taken into consideration. Plus, these approaches require

dimensionality reduction (DR) in a pre-processing stage to make the

effective A square – but DR may not be reliable in the presence

of outliers or modeling errors. Another major branch of algorithms

considers [17, 18]

min
A∈R

M×N ,S∈R
N×L

‖X −AS‖2F + λ · vol(A)

s.t. S ≥ 0, 1
T
S = 1

T
,

(4)

1Note that in the literature such as [17,18,24,25], the definition of vol(A)
may be slightly different from one work to another although they all employ
determinant.

outliera1a1

a2a2

a3a3

Fig. 1: Left: The intuition of VolMin for an N = 3 case. The

dots are x[ℓ]’s; the shaded area is conv{a1, . . . ,aN}, the triangles

with dashed lines are data-enclosing convex hulls, and the one with

solid lines is the minimum-volume enclosing convex hull. Right: the

impact of outliers.

where λ > 0 is a parameter that balances data fidelity versus volume

minimization. The formulation in (4) avoids DR and takes noise into

consideration, but the algorithms are less efficient, since volume-

minimization penalties like det(AT
A) are hard to cope with.

Another notable difficulty is that outliers are very damaging to

VolMin. In real-world applications, outlying measurements are com-

monly seen. In HU, ‘dead pixels’ or pixels that do not obey the linear

model in (1) are frequently spotted; and in document clustering, arti-

cles not belonging to any known category may exist. In many cases,

a single outlier can make the minimum-volume enclosing convex

hull very different from the desired one; see Fig. 1 (right) for an illus-

tration. The only work that considers outliers for the VolMin-based

factorization is [19], but it takes care of outliers in the dimension-

reduced domain. As already mentioned, the DR process itself may

be impaired by outliers, and thus dealing with outliers in the original

data domain is more appealing.

3. PROPOSED ROBUST VOLMIN ALGORITHM

We are interested in the VolMin-regularized matrix factorization, but

we take the outlier problem into consideration. Specifically, we pro-

pose to employ the following optimization criterion:

min
A,S

L
∑

ℓ=1

1

2

(

‖x[ℓ]−As[ℓ]‖22 + ǫ
)

p
2 + λ log det(AT

A+ ǫI)

s.t. 1T
s[ℓ] = 1, s[ℓ] ≥ 0, ∀ℓ, (5)

where 0 < p ≤ 1, and λ, ǫ > 0. Here, ǫ is a small regularization

parameter, which prevents the second term in the cost function from

being unbounded; it also keeps the first term smooth, which is desir-

able from a computation viewpoint. The p-(quasi-) norm-like data

fitting criterion is employed to suppress the impact of the outliers:

compared to the commonly used Frobenius norm-based fitting crite-

rion (cf. Eq (4)), it is less sensitive to large fitting errors and tends

to ignore the associated data points. Notice that we use log det(·)
instead of det(·) as in [17, 18, 26] for volume regularization. Log-

determinant-based volume minimization has been used in [19, 27],

where it has a maximum-likelihood interpretation when s[ℓ] follows

the uniform Dirichlet distribution. Also, using log det(·) will prove

handy in our algorithm development.

To deal with the above problem, let us introduce two lemmas:

Lemma 1 [28] Assume 0 < p < 2, ǫ ≥ 0, and φp(w) :=

2−p
2

(

2
p
w
)

p
p−2

+ǫw. Then, we have
(

x2 + ǫ
)p/2

= minw≥0 wx2+
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φp(w), where the solution is uniquely given by wopt =
p
2

(

x2 + ǫ
)

p−2

2 .

Lemma 2 [29] Let E ∈ R
N×N be any matrix such that E ≻ 0.

Consider the function f(F ) = Tr (FE) − log detF − K. Then,

we have log detE = minF�0 f(F ), and the solution is uniquely

given by Fopt = E
−1.

The above two lemmas provide two functions to ‘majorize’ both

the data fitting term and the volume-regularization term in (5), re-

spectively. Consequently, Problem (5) can be recast as:

min
A,S,{wℓ},F

L
∑

ℓ=1

wℓ

2
‖x[ℓ]−As[ℓ]‖22 +

L
∑

ℓ=1

φp(wℓ)

+ λ
(

Tr(F (AT
A+ ǫI))− log detF

)

s.t. 1T
s[ℓ] = 1, s[ℓ] ≥ 0, ∀ℓ

F � 0, wℓ ≥ 0, ∀ℓ.

(6)

The reformulation in Problem (6) opens a door for handling the prob-

lem of interest in an easy way, since the partial minimizations w.r.t.

A, S, {wℓ}
L
ℓ=1 and F are all convex problems.

Let us consider the solutions to the aforementioned conditional

minimizations. The conditional minimization w.r.t. A is an uncon-

strained quadratic program, and the solution is

A := XWS
T
(

SWS
T + λF

)−1

, (7)

where W = Diag(w1, . . . , wL). The conditional minimization

w.r.t. S is separable w.r.t. its columns s[ℓ]; specifically, s[ℓ] for

ℓ = 1, . . . , L is updated by solving the following:

s[ℓ] := arg min
1T s[ℓ]=1, s[ℓ]≥0

‖x[ℓ]−As[ℓ]‖22. (8)

Problem (8) is convex and there is one more than one way to solve

it. Here, we employ alternating direction method of multipliers

(ADMM) [30] to solve it. The idea of ADMM is to first rewrite

the Problem (8) as

min
s[ℓ],z[ℓ]

‖x[ℓ]−Az[ℓ]‖22

s.t. 1
T
z[ℓ] = 1, s[ℓ] ≥ 0, z[ℓ] = s[ℓ],

(9)

and then solve it using an algorithm that alternately updates s[ℓ],
z[ℓ] and a dual variable; see Algorithm 2 for details. Notice that

each update of the ADMM algorithm has a closed-form solution,

and thus can be carried out easily.

The conditional minimizations w.r.t. W and F are straightfor-

ward by Lemma 1 and Lemma 2; we have

wℓ :=
p

2

(

‖x[ℓ]−As[ℓ]‖22 + ǫ
)

p−2

2 , (10)

F :=
(

A
T
A+ ǫI

)−1

. (11)

The proposed algorithm updates {A,S,W ,F } cyclically, until a

stopping criterion is satisfied. Notice that W and F can be updated

simultaneously. Hence, the algorithm, which is summarized in Al-

gorithm 1, can be considered as three-block alternating optimization

algorithm. We show that

Proposition 1 Let {A∗,S∗,F ∗,W ∗} be a limit point of the solu-

tion sequence produced by the proposed algorithm. Then, {A∗,S∗}
is a stationary point of Problem (5).

The proof is omitted due to space limitation. According to Proposi-

tion 1, although we have been dealing with Problem (5) indirectly,

convergence to a stationary point of Problem (5) is guaranteed.

Algorithm 1: Robust VolMin

input : X ; p ∈ (0, 1]; N ; initializations (A,S); ǫ.
1 W = I; F = I;

2 repeat

3 A := XWS
T
(

SWS
T + λF

)−1
;

4 use Algorithm 2 to update {s[ℓ]}Lℓ=1 by solving:

s[ℓ] := arg min
1T s[ℓ]=1,s[ℓ]≥0

‖x[ℓ]−As[ℓ]‖22

5 wℓ :=
p
2

(

‖x[ℓ]−As[ℓ]‖22 + ǫ
)

p−2

2 for ℓ = 1, . . . , L;

6 F :=
(

A
T
A+ ǫI

)−1
.

7 until Some stopping criterion is reached;

output: {s[ℓ]}; A.

Algorithm 2: ADMM for solving Problem (8)

input : x[ℓ], A; initialization s[ℓ]; step size ρ > 0.

1 let auxiliary variable z[ℓ] = s[ℓ];
2 let dual variable u[ℓ] = 0;

3 repeat

4 z[ℓ] := arg min
1T z[ℓ]=1T

1

2
‖x[ℓ]−Az[ℓ]‖22 +

ρ

2
‖z[ℓ]−

s[ℓ] + u[ℓ]‖22;

5 s[ℓ] := max{z[ℓ] + u[ℓ], 0};

6 u[ℓ] := z[ℓ]− s[ℓ] + u[ℓ].

7 until Some stopping criterion is reached;

output: s[ℓ]

4. SIMULATIONS

In this section, we provide simulations to showcase the effectiveness

of the proposed algorithm. We generate the elements of A ∈ R
M×N

following the uniform distribution between zero and one, and s[ℓ]
following the uniform Dirichlet distribution. We threshold the max-

imal value of s[ℓ]’s elements to be 0.9 so that an does not appear in

the columns of X , resulting in relatively difficult cases for factoriza-

tion. Zero-mean white Gaussian noise is added to the generated data.

Also, we replace some data points by outliers. The outliers are gen-

erated following the uniform distribution between zero and α > 0.

Throughout this section, we fix p = 0.5, ǫ = 10−10, and stop the

proposed algorithm when the absolute change of the cost function is

smaller than 10−5 or the number of iterations reaches 1000.

Fig. 2 shows an illustrative example, where M = 30, N = 3
and L = 500. The visualization is by projecting the data and the

results onto the ground-truth affine hull of a1, . . . ,a3. In this case,

α is set to be 2, ten outliers are added, and the SNR is 20dB. The

benchmarked algorithm is simplex identification via split augmented

Lagrangian (SISAL) [19], which is a state-of-the-art VolMin algo-

rithm that takes outliers into consideration. We also use SISAL to

initialize the proposed algorithm in this section. There is a param-

eter µ in SISAL; a large µ means that there are no or only a few

outliers, and a small µ means the opposite. In Fig. 2, we present the

results of SISAL under several µ’s and the proposed algorithm with

λ = 1, respectively. We see that SISAL fails to find A in this case.

The reason is that the DR pre-processing of SISAL already throws

the data into a badly estimated subspace because of the presence of
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groudtruth
SISAL (µ = 10)
SISAL (µ =1)
SISAL (µ = .1)
Proposed
iter. traject. proposed algo.

Fig. 2: The estimated Â by the algorithms for an N = 3 case.

(M,N,L) = (30, 3, 500); SNR= 20dB; α = 2; number of

outliers= 10.

outliers. On the other hand, we see that the proposed algorithm suc-

cessfully finds the vertices of the desired convex hull. By looking at

the iteration trajectory of the proposed algorithm in Fig. 2, we see

that, despite starting from some points far away from the ground-

truth vertices, the proposed algorithm manages to approach them.

Fig. 3 presents the mean squared error (MSE) of the estimated

A by the algorithms under different SNRs. The results are averaged

over 100 independent trials. In each trial, we randomly generate A,

S, noise, and outliers. We let (M,N) = (30, 5), L = 1000, and

the number of outliers be 20 in this simulation. The parameter α is

fixed to be 0.5. We see that the proposed algorithm works better than

SISAL for all SNRs under test using both λ = 0.5 and λ = 1. Simi-

lar results can be seen in Fig. 4, where the results are obtained under

different number of outliers and SNR= 20dB. We see that SISAL

with µ = 1 yields a reasonable result when the number of outliers is

10. But when the number of outliers increases, SISAL cannot yield

accurate estimates of A. On the other hand, the proposed algorithm

with λ = 1 consistently gives good estimation results.

We also test the proposed algorithm on a semi-real simulation,

where we generate hyperspectral pixels x[ℓ] for ℓ = 1, . . . , 1000
using real-world hyperspectral signatures. The spectral signatures

an for n = 1, . . . , 4 correspond to different minerals (namely,

Carnallite, Ammonioalunite, Biotite, and Actinolite) collected in the

U.S.G.S. library [31]. Each signature an has M = 224 bands.

Here, we apply the algorithms to detect the underlying materials,

i.e., to estimate A. This is considered more challenging than the

previous simulations since the signatures are usually highly corre-

lated, resulting in a badly conditioned A. In this simulation, we

add 30 outliers with α = 1 and set SNR= 30dB. The other settings

follow the previous simulations. In Fig. 5, we see that SISAL fails to

recover at least one spectral signature in this case, but the proposed

algorithm gives accurate estimates.

5. CONCLUSION

We considered the VolMin-based matrix factorization problem by

developing an outliers-robust VolMin criterion and algorithm. The

proposed algorithm is algebraically simple, and equipped with guar-

antee of convergence to a stationary point. Numerical results showed

that the proposed algorithm outperforms the state-of-the-art in robust

volume minimization.
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Fig. 3: The MSEs of the estimated Â by the algorithms under var-

ious SNRs. (M,N, L) = (30, 5, 1000); α = 0.5; number of

outliers= 20.
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Fig. 4: The MSEs of the estimated Â by the algorithms under var-

ious amount of outliers. (M,N,L) = (30, 5, 1000); α = 0.5;

SNR= 20dB; λ = 1.
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Fig. 5: The groundtruth and the estimated hyperspectral signatures

by the algorithms. (M,N,L) = (224, 4, 1000); α = 1; SNR=
30dB; λ = 1.
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