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ABSTRACT

In this paper, we consider tensor completion under adaptive
sampling of tensor (a multidimensional array) fibers. Tensor
fibers or tubes are vectors obtained by fixing all but one index
of the array. This sampling is in contrast to the cases con-
sidered so far where one performs an adaptive element-wise
sampling. In this context we exploit a recently proposed al-
gebraic framework to model tensor data [1] and model the
underlying data as a tensor with low tensor tubal-rank. Under
this model we then present an algorithm for adaptive sam-
pling and recovery, which is shown to be nearly optimal in
terms of sampling complexity. We apply this algorithm for
robust estimation of RF fingerprints for accurate indoor local-
ization. We show the performance on real and synthetic data
sets. Compared to existing methods, that are primarily based
on non-adaptive matrix completion methods, adaptive tensor
completion achieves significantly better performance.

Index Terms – Data completion, Adaptive Sampling, Ten-
sor algebra, RF fingerprinting

1. INTRODUCTION
Matrix and tensor completion from limited measurements has
recently received a lot of attention with applications to many
domains ranging from recommender systems [2], computer
vision [3, 4] to seismic data interpolation [5]. Recently adap-
tivity in sampling has been shown to be very powerful for both
matrix and tensor completion [11, 21]. So far these papers
have focused on adaptive sampling of tensor elements. How-
ever in some cases, it is not feasible to perform element-wise
sampling and one needs to sample an entire fiber of a ten-
sor. For example, we consider the case of indoor localization
where at each location the observer samples an entire vector
of RSS signal strengths from a given set of access points. In
this case it is not immediately clear how to adaptively acquire
data, using current methods, for a robust estimation of the fin-
gerprints for all the locations. In this paper we consider such
a scenario.

In this context we exploit a recently proposed tensor al-
gebraic framework [1], which models 3D tensors as linear
operators. In this framework one can obtain an SVD like
factorization, referred to as the tensor-SVD (t-SVD), which
is a rank-revealing factorization with extensions of the no-
tion of column/row subspaces of a matrix to that of tensor-

column/tensor-row subspaces. Under this algebraic frame-
work we propose an adaptive tensor-column subspace esti-
mation algorithm, which in essence is similar to the adaptive
column-subspace estimation algorithm proposed in [11]. Un-
der some incoherency conditions we show that the proposed
method is nearly optimal in terms of sampling complexity.

We show the performance of the proposed method for an
RF fingerprinting application, where the objective is to fill in
3D RF fingerprint data by adaptive spatial sampling of the re-
ceived signal strength (RSS) from a set of access points (AP).
For this application, our work is very different from existing
approaches [7, 8, 13] that utilize non-adaptive matrix com-
pletion methods.

2. ALGEBRAIC FRAMEWORK FOR 3D TENSORS
Our approach rests on the algebraic framework developed and
used in [1, 4, 10]. Note that this framework is different from
the traditional multilinear algebraic framework for tensor de-
compositions [9] that has been considered so far in the lit-
erature for problems of completing multidimensional arrays
[22–24] with different notions for tensor rank.

Notation- A third-order tensor is represented by calli-
graphic letters, denoted as T ∈ RN1×N2×N3 , and its (i, j, k)-
th entry is T (i, j, k). A tube (or fiber) of a tensor is a 1-D
section defined by fixing all indices but one. For example,
in the RF fingerprinting application, we use tube T (i, j, :) to
denote a fingerprint at a spatial reference point index (i, j).
Similarly, a slice of a tensor is a 2-D section defined by fix-
ing all but two indices. frontal, lateral, horizontal slices are
denoted as T (:, :, k), T (:, j, :), T (i, :, :), respectively.

For two tubes a, b ∈ R1×1×N3 , a ∗ b denotes the circular
convolution between these two vectors. The algebraic devel-
opment in [1] rests on defining a tensor-tensor product be-
tween two 3-D tensors, referred to as the t-product and uses
circular convolution between tubes, as defined below.

Definition 1. t-product. The t-product C = A ∗ B of A ∈
RN1×N2×N3 and B ∈ RN2×N4×N3 is a tensor of size N1 ×
N4 × N3 whose (i, j)-th tube C(i, j, :) is given by C(i, j, :

) =
N2∑
k=1

A(i, k, :) ∗ B(k, j, :), for i = 1, 2, ..., N1 and j =

1, 2, ..., N4.

Remark - A third-order tensor of size N1 ×N2 ×N3 can
be viewed as an N1×N2 matrix of tubes that are in the third-
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Fig. 1. The t-SVD of an N1 ×N2 ×N3 tensor.

dimension. So the t-product of two tensors can be regarded as
multiplication of two matrices, except that the multiplication
of two numbers is replaced by the circular convolution of two
tubes (tensor fibers).

This insight allows one to treat 3-D tensors as linear op-
erators over 2-D matrices as analyzed in [1]. Using this per-
spective one can define a SVD type decomposition, referred
to as the tensor-SVD (t-SVD). To define the t-SVD we intro-
duce a few definitions.

Definition 2. Identity tensor. The identity tensor I ∈
RN1×N1×N3 is a tensor whose first frontal slice I(:, :, 1)
is the N1 ×N1 identity matrix and all other frontal slices are
zero.

Definition 3. Tensor transpose. The transpose of tensor T is
theN2×N1×N3 tensor T > obtained by transposing each of
the frontal slices and then reversing the order of transposed
frontal slices 2 through N3, i.e., for k = 2, 3, ..., N3, T >(:, :
, k) = (T (:, :, N3 + 2 − k))> (the transpose of matrix T (:, :
, N3 + 2− k)).

Definition 4. Orthogonal tensor. A tensorQ ∈ RN1×N1×N3

is orthogonal if it satisfies Q> ∗ Q = Q ∗ Q> = I.

Definition 5. f-diagonal tensor. A tensor is called f-diagonal
if each frontal slice of the tensor is a diagonal matrix, i.e.,
T (i, j, k) = 0 for i 6= j,∀k.

Using these definitions one can obtain the t-SVD defined
in the following result from [1]. Please see Figure 1 for a
graphical representation.

Theorem 1. t-SVD. A tensor T ∈ RN1×N2×N3 , can be de-
composed as T = U ∗Θ∗V>, where U and V are orthogonal
tensors of sizes N1 × N1 × N3 and N2 × N2 × N3 respec-
tively, i.e. U>∗U = I and V>∗V = I and Θ is a rectangular
f-diagonal tensor of size N1 ×N2 ×N3.

Definition 6. Tensor tubal-rank. The tensor tubal-rank of a
third-order tensor is the number of non-zero fibers of Θ in the
t-SVD.

In this framework, the principle of dimensionality reduc-
tion follows from the following result from [1] 1.

1Note that Θ in t-SVD is organized in a decreasing order, i.e., ||Θ(1, 1, :
)||F ≥ ||Θ(2, 2, :)||F ≥ ..., which is implicitly defined in [4] as the al-
gorithm for computing t-SVD is based on matrix SVD. Therefore, the best
rank-r approximation of tensors is similar to PCA (principal component anal-
ysis).

Lemma 1. Best rank-r approximation. Let the t-SVD of
T ∈ RN1×N2×N3 be given by T = U ∗ Θ ∗ V> and for
r ≤ min(N1, N2) define Tr =

∑r
i=1 U(:, i, :) ∗ Θ(i, i, :) ∗

V>(:, i, :), then Tr = arg min
T ∈T
||T − T ||F , where T = {= =

X ∗ Y|X ∈ RN1×r×N3 ,Y ∈ Rr×N2×N3}.

We now define the notion of tensor-column space - Under
the proposed framework, a tensor-column subspace of a 3D
tensor T is the space spanned by the lateral slices of U under
the t-product, i.e., the set generated by t-linear combinations
like so,

t-colspan(U) = {X =

r∑
j=1

U(:, j, :)∗cj ∈ RN1×1×N3 , cj ∈ RN3},

where r denotes the tensor tubal-rank.
3. ADAPTIVE TENSOR COMPLETION

We consider a three-dimensional tensor of sizeN1×N2×N3,
where N1N2 locations have N3 features each, e.g. corre-
sponding to RSS values from N3 access points. Let M ≤
N1N2 denote the sampling budget, i.e., we can sample the
tensor fibers along the third dimension at M reference points.

We model the partial observation model under tubal-
sampling as follows:

Y = PΩ(T ) + PΩ(N ), Ω ⊂ G, (1)

where the (i, j, k)-th entry of PΩ(X ) is equal to X (i, j, k) if
(i, j) ∈ Ω and zero otherwise, i.e. we sample the entire tensor
fiber T (i, j, :), Ω being a subset of the locations G and of size
M , and N is an N1 × N2 × N3 tensor with i.i.d. N(0, σ2)
elements, representing the additive Gaussian noise. To cut
down the survey burden, we measure the feature values of
a small subset of reference points and then estimate T from
the samples Y . Under the assumption that tensor T has low-
tubal-rank and given a sampling budget M , we want to solve
the following optimization problem.

〈T̂ , Ω̂〉 = arg min
X ,Ω

||PΩ(Y−X )||2F+λ·rank(X ), : |Ω| ≤M,

(2)
where X is the decision variable, rank(·) refers to the tensor
tubal-rank, M is the sampling budget, and λ is a regulariza-
tion parameter.

Note - We want to emphasize again that the we are inter-
ested in sampling tensor fibers and not element-wise sampling
as is the focus of many recent papers.

Tensor completion with adaptive tubal-sampling - The
optimization problem of Equation (2) contains two goals: (1)
For a given low-tubal-rank tensor X , to select a set Ω with the
smallest cardinality and the corresponding samples Y , pre-
serving most information of tensor X , i.e., one can recover
X from Ω and Y . (2) For a given set Ω and samples Y , to
estimate a tensor X that has the least tubal-rank. However,
these two goals are intertwined together and one cannot ex-
pect a computationally feasible algorithm to get the optimal

2530



Fig. 2. A 3D tensor with its lateral slices. The lateral slices
can be seen as column vectors, with tubal elements. The en-
gineer performs site survey at a few random selected refer-
ence points (with red color) of the j-th tensor-column of T .
Knowing the r-dimensional tensor-column subspace U , one
can recover the j-th lateral slice T (:, j, :).

solution. Therefore, we set |Ω| = M and seek to select a
set Ω and the corresponding samples Y that span the low-
dimensional tensor-column subspace of T . The focus of this
section is to design an efficient sampling scheme and to pro-
vide a bound on the sampling budget M for reliable recovery.

To achieve this, we design a two-pass sampling scheme
inspired by [15]. The pseudo-code of our adaptive sampling
approach is shown in Algorithm 1. The inputs include the
grid map G, the sampling budget M , the size of the tensor,
N1, N2, N3, the allocation ratio δ, and the number of iter-
ations L. The algorithm consists of three steps. The 1st-
pass sampling is a uniform tubal-sampling, while the 2nd-
pass sampling outputs an estimate Û of the tensor-column
subspace U in L rounds, as explained below.

Algorithm 1 Tensor completion based on adaptive sampling
Input: parameters G,M,N1, N2, N3, δ, L
1st-pass sampling:
Uniformly sample δM/N2 reference points from each col-

umn of the grip map G, denoted as Ω1
j . Ω1 =

N2⋃
j=1

Ω1
j .

2nd-pass sampling:
Û ← ∅, Π← {1, 2, ..., N2}.
for l = 1 : L do

Estimate p̂j =
||PÛ⊥ (T (:,Ω1

j ,:))||
2
F

||PÛ⊥ (T (:,Ω1,:))||2F
, ∀j ∈ Π.

Sample s = (1−δ)M
N2L

columns of G according to p̂j for
∀j ∈ Π, denoted as Πl

s.

Calculate U← PÛ⊥ (T (:,Πl
s,:))

||PÛ⊥ (T (:,Πl
s,:))||F

, and update Û ← Û ∪
U (concatenate U to Û).
Π← Π/Πl

s (set subtraction).
end for
Estimate T̂ (:, j, :) = Û ∗ (ÛTΩj

∗ ÛΩj
)−1 ∗ ÛTΩj

∗T (Ωj , j, :).

In particular the total sampling budgetM(< N1N2) is di-
vided into δM and (1 − δ)M for these two sampling passes
and δ is called the allocation ratio. In the 1st-pass sampling,
we randomly sample δM/N2 out of N1 reference points in
each column of G. In the 2nd-pass sampling, the remaining

(1 − δ)M samples are allocated to those highly informative
columns identified by the 1st-pass sampling. Finally, tensor
completion on those M RF fingerprints is performed to re-
build a fingerprint database. The provable optimality of this
scheme rests on these three assumptions about T .

• T is embedded in an r-dimensional tensor-column sub-
space U , r � min(N1, N2);

• Learning U requires to know only r linearly indepen-
dent lateral slices;2

• Knowing U , randomly sampling a few tubes of the j-th
column is enough to recover the lateral slice T (:, j, :);

• One can then concatenate all estimated lateral slices to
form an estimated tensor.

However, we do not know the value of r a priori nor the
linearity between any two lateral slices. Ideally, this prob-
lem can be solved by sampling each column according to the
probability distribution where the probability pj of sampling
the j-th lateral slice is proportional to ||PU⊥T (:, j, :)||2F , i.e,

pj =
||PU⊥T (:,j,:)||2F
||PU⊥T ||2F

. Updating the estimate of U iteratively,
when cr (c > 1 is a small constant) columns are sampled, we
can expect that with high probability, ||PU⊥T (:, j, :)||2F = 0,
∀j. Note that PU⊥(·) denotes projection onto the orthogonal
space of U ; in t-product form, PU = U ∗ (UT ∗ U)−1 ∗ UT ,
PU⊥ = I − PU [1].

The challenge is that we cannot have the exact sam-
pling probability pj without sampling all reference points of
the grid map G. Exploiting the spatial correlation, one can
estimate the sampling probability from missing data (sub-

sampled data), as p̂j =
||PU⊥ (T (:,Ω1

j ,:))||
2
F

||PU⊥ (T (:,Ω1,:))||2F
in Algorithm 1.

Under some conditions we can prove that p̂j is a good esti-
mation of pj and hence the algorithm performs as expected.

Performance bounds - The results and conditions with
proof for the success of the algorithm are outlined in the paper
[25]. Essentially the algorithm succeeds with high probability
if the number of measurements M > O(rN log2N) where
N = max{N1, N2} and if the energy is not concentrated on a
few horizontal slices of the tensor. This condition is referred
to as the tensor incoherency condition. In contrast to the in-
coherency conditions on both the lateral and the horizontal
slices as required in [10] under random elementw-wise non-
adaptive sampling, we only require the incoherency of the lat-
eral slices when using the proposed adaptive tubal-sampling
scheme.

4. PERFORMANCE EVALUATION - RF
FINGERPRINT DATA COMPLETION

We select a region of 47.5m × 59.7m in a real office build-
ing, as shown in Fig. 3. It is divided into a 476 × 598 grid

2Note: A collection of r lateral slices U(:, j, :), j = 1, ..., r are said to
be linearly independent (in the proposed setting) if

∑r
j=1 U(:, j, :) ∗ cj =

0 =⇒ cj = 0, ∀j.
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Fig. 3. RSS map for simulations measured in dBm.

map. There are 15 access points randomly deployed within
this region. The ray tracing model [16, 17] is adopted, mod-
eling all the propagation effects and a 476× 598× 15 tensor
is obtained as the ground truth containing the received signal
strength (RSS) values from different access points, measured
in dBm.

Varying the spatial sampling rate from 10% to 90%, we
quantify the recovery error in terms of normalized square of
error (NSE) for entries that are not sampled, i.e., recovery
error for set Ωc. The NSE is defined as:

NSE =

∑
(i,j)∈Ωc ||T̂ (i, j, :)− T (i, j, :)||2F∑

(i,j)∈Ωc ||T (i, j, :)||2F
, (3)

where T̂ is the estimated tensor, Ωc is the complement of Ω.
For comparison, we consider three algorithms, tensor

completion (TC) under uniformly random tubal-sampling
and using the algorithm proposed in [4, 10], using the face-
wise matrix completion (MC) algorithm in [18], and tensor
completion via matricization or flattening (MC-flat) [24] un-
der uniform element-wise sampling of the 3D tensor, using
the AltMin algorithm for matrix completion [6].

Fig. 4 shows the RSS tensor recovery performance for
varying sampling rate. Compared schemes are matrix com-
pletion and tensor completion via uniform sampling, and
adaptive sampling with allocation ratio δ = 1/4 and δ = 1/2.
We find that all tensor approaches are better than matrix com-
pletion, this is because tensor exploits the cross correlations
among access points while matrix completion only takes ad-
vantage of correlation within each access point. Both AS
schemes outperform tensor completion via uniform sampling
since adaptivity can guide the sampling process to concentrate
on more informative entries. Allocating equal sampling bud-
get for the 1st-pass and the 2nd-pass gives better performance
than uneven allocation. This shows that the 1st-pass and the
2nd-pass have equal importance. The proposed scheme (AS
with δ = 1/2) rebuilds a fingerprint data with 5% error using
less than 30% samples.

We collected a WiFi RSS data set in the same office. The
data set contains 89 selected locations and 31 access points.
Since the locations are not exactly on a grid, we set the grid
size to be 3m × 5m, and apply the k-nearest neighbor (KNN)
method to extract a full third-order tensor as the ground truth.
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Fig. 4. Tensor recovery for varying sampling rate. MC de-
notes matrix completion via uniform sampling, TC denotes
tensor completion via uniform sampling, while AS-1/4 and
AS-1/2 denote our adaptive sampling scheme with allocation
ratios δ = 1/4 and δ = 1/2, respectively. MC-flat denotes
completion by flattening the 3-D data into a matrix of loca-
tions × APs and using matrix completion, an approach fol-
lowed in [12].
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Fig. 5. Tensor recovery in the real-world data set. The same
legend as in Fig. 4

To be specific, for each grid point, we set its RSS vector by
averaging the RSS vectors from the nearest three (k = 3)
locations. The ground truth tensor has dimension 10×10×31.

Fig. 5 shows the RSS tensor recovery performance for
the real-world data set. First, as compared with Fig. 4, we see
that the recovery performance on real-world data is inconsis-
tent with that of simulated data. Second, for real-world data
set, tensor model is superior to matrix model. The reason is
tensor can better exploit the spatial correlations of RSS values
across multiple access points. In our case, a major ingredient
for the recovery improvement may be the large number of
access points (i.e., 31), compared with the dimension of the
grid (i.e., 10x10). Third, as expected, the propose adaptive
scheme achieves better recovery performance.

5. CONCLUSIONS

In this paper, an adaptive sampling approach is proposed to
relieve the number of locations at which feature vectors are
measured. For low tubal-rank tensors, we proposed an al-
gorithm for adaptive sampling. We show that the proposed
scheme achieves near-optimal sampling complexity.
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